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From the principle of virtual work it is shown that, if equilibrium stress fluctuations are described by a
Langevin equation, there is only one possible extension of this equation to describe stress fluctuations in
a shear flow. It is shown that the resulting equation is consistent with linear-response theory. The for-
malism developed may be looked upon as a method for extending differential constitutive relations to in-
corporate thermal fluctuations. A few simple models are discussed as illustrations. These include a
model where the stress fluctuates freely below a certain limit, and a model constructed to mimic the
Tobolsky-Eyring phenomenological theory [J. Chem. Phys. 11, 125 (1942)] of viscoelastic liquids. It is
concluded that these and similar models, however, do not realistically describe real polymeric liquids.
To reach this goal, models involving several stress degrees of freedom will have to be considered.

PACS number(s): 82.70.—y, 05.40.+], 03.40.G¢c

I. INTRODUCTION

Presently, the most popular models of the viscoelastici-
ty of polymeric liquids are based on a microscopic
description, where the bead coordinates are the basic de-
grees of freedom [1,2]. These models are rather success-
ful but, unfortunately, also quite complicated to solve.
The present paper investigates the more phenomenologi-
cal approach to take as a basic degree of freedom the
quantity of main interest, the shear stress. In part, this
represents a return to ideas proposed by Eyring, Tobol-
sky, Andrews, and Hofman-Bang many years ago [3-5].
Here, however, a formalism is developed which is con-
sistent with statistical mechanics. This is done by assum-
ing a Langevin equation for the shear-stress dynamics in
equilibrium. From this the stress fluctuations may be cal-
culated and thereby, via the fluctuation-dissipation
theorem, the linear frequency-dependent viscosity may be
calculated. The main result of the paper is a proof that
the nonlinear response to any shear displacement is
uniquely determined by the requirement that the princi-
ple of virtual work is obeyed. It is shown that this princi-
ple ensures that linear-response theory is obeyed, a sine
qua non requirement (Sec. II). In Sec. III a few simple
models are worked out. Finally, in Sec. IV a discussion is
given. It is concluded that, in order to model realistically
reality, the proposed formalism must be generalized to in-
clude spatially varying stresses.

II. UNIQUE COUPLING OF DEFORMATION
TO STRESS FLUCTUATIONS

Here and henceforth the term “stress” refers to the
shear stress o, while the corresponding x-y shear rate is
denoted by y(¢). The fluctuation-dissipation theorem [2]
allows a calculation of the frequency-dependent viscosity
n(w) in terms of equilibrium stress fluctuations. The
theorem states that the stress relaxation modulus G(z),
which is characterized by
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n(w)=f0°°G(t)e"'w‘dt , 8
is given by

(s(0)s(2)),
Gt)y=B———— . (2)
| 4

Here, a sample of volume ¥V is considered, s is the “total”
stress (i.e., 0,,=s/V), and B=1/kpT. The subscript
zero on the right-hand side of Eq. (2) is introduced to re-
mind one that the autocorrelation function refers to fluc-
tuations in thermal equilibrium. If R; is the coordinate
vector of the ith bead and F; is the force on the ith bead,
the quantity s is given [2] by

s=—3R,,F,, . (3)

[Note that the relaxation modulus of Eq. (2) has a well-
defined limit for V' — co: this is the usual macroscopic
shear-stress relaxation modulus.]

From now on the following simple model is adopted.
The liquid is regarded as divided into regions whose
stresses fluctuate independently. A discussion of this
rather severe approximation is postponed to Sec. IV.
There is just one relevant degree of freedom in the model,
the quantity s of Eq. (3), where the sum is now restricted
to one region. The quantity s has dimension energy, but
will still be referred to as the “stress.” It is convenient
also to redefine ‘“‘viscosity” by absorbing the region
volume, so that viscosity is from now on simply {s) /7.
With these definitions Egs. (1) and (2) become

n(w)-—-Bfow(s(O)s(t)>0e_i“"dt . 4)

We remind the reader that Eq. (4) is equivalent to saying
that the average stress for small shear rate y(¢) is given
by

(s(t)>?=Bf0w<s(0)s(7')>07'/(t—'r)d7' . (5)

According to statistical mechanics, the probability of an s
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fluctuation in equilibrium is given by the free energy as a
function of s, F(s). If " denotes the complete set of mi-
croscopic coordinates referring to one region, and s(I')
and E(T") denote, respectively, the value of s and of ener-
gy in state I', F(s) is given by

e PFO)= [¢PEDI§(s —s(I'))dT . 6)

It is assumed that F(s)—>oc as |s|—, and that
F(s)=F(—s). Note that the free energy of one region is
given by

e_BF=f°° e “PFL)gg (7)

Now the further assumption is made that the s fluctua-
tions in equilibrium are described by a Langevin equa-
tion,

dF
§=—p—+E(1) .
$ s &(t) (8)
Here, p is the “mobility” (“velocity”/“force”) which
determines the time scale, and £(¢) is a Gaussian white-
noise term:

(E(1)E(L")) =2uky TS(t—1') . 9)

While Eq. (8) is a completely phenomenological postu-
late, it has the crucial property [2,6,7] that the stationary
s-probability distribution P(s) is that required by statisti-
cal mechanics:

Py(s)=N "le BF® (10)

Any initial probability distribution converges to Py(s) as
t— oo; the equation governing this is the well-known
Smoluchowski equation [2,6,7] (sometimes referred to as
the Fokker-Planck equation or just the diffusion equa-
tion)

aP _ 3 | aF aP
L= 1P+ 2.
ot as |Pas DTk T 5 (a1

A substitution of Eq. (10) into Eq. (11) confirms that
P,(s) is the stationary solution.

How is the s dynamics changed when the liquid flows?
The simplest way to modify Eq. (8) is to add an extra
term coupling to y(¢), writing

s~=—y%f- FP(OT(5)+ED) . (12)

In Eq. (12) the shear rate plays the role of an external
field. Obviously, J(s) is a kind of stress-dependent
infinite frequency shear modulus. The Smoluchowski
equation corresponding to Eq. (12) is

%P

dP _ 0
oFr +ukpT— . (13)
HKp asz

dt ‘os

dF

uz—y(t)J P

We now proceed to show first that J(s) is uniquely deter-
mined by the principle of virtual work. Then it is shown
that, with this choice of J(s), linear-response theory [Egs.
(1) and (2)] is reproduced in the small shear rate limit, as
is necessary to have a consistent theory.

For any probability distribution P(s) the dynamical

free energy A is defined [2] by
A= [7 ds P(s){F(s)+ksTIn[P(s)]} . (14)

The principle of virtual work [2,8] says that after the vir-
tual displacement

y(t)=056yd(t) , (15)
A is changed by
84=(s)8y . (16)

From Eq. (14) the variation in 4 is given by

84=[" ds8P(s){F(s)+kyTIn[P(s)]} . 17

Substituting Eq. (15) into Eq. (13) and integrating over a
small interval around O gives, to lowest order in 8y,

ap=—ay§—s(m . (18)

By combining Egs. (17) and (18) one finds by partial in-
tegrations

s4=—8y [~ ds

3 3
F-(JP)+kyT In(P)2-(JP)

dF P
SIP+ky To-T

=8y [~ ds

LIy

s s P (19)

=87/f_°° ds

If this is to be consistent with Eq. (16) for all P(s), J(s)
must obey

d
A —p2lr—ps . 20)
The solution of this equation is
J(s)=eBF(”fwds'ﬂs’e_‘ms" . 21
s

All other solutions lead to an exponentially increasing
J(s) and thereby an inconsistent model where s runs off
to infinity in any shear flow. For f8— o Eq. (21) implies
J(s)=s/(dF /ds).

Next it is shown that the J(s) of Eq. (21) ensures that
linear-response theory is reproduced. First Eq. (12) is
rewritten as

§=-—,u%[F—7'/(t)<I>]+§(t) , (22)
where
do _J
s _,u . (23)

Equation (22) shows that the coupling to the shear dis-
placement “field” appears as an extra term —y(z)®(s) in
the Hamiltonian. In the small-shear-rate limit, linear-
response theory applied to Eq. (22) leads [2] to

(), =B [ "pe—n— L Br=0s(n)edr . @4
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Equation (24) is consistent with Eq. (5) if
— (@ (r=0)s(7))o=(s(0s(7)) 25)

To prove Eq. (25) note that the ® —s correlation function
is given by
(P(r=0)s(7)),

= f_m ds’s'f * ds Py(s)®(s)Gy(s,s;7) ,  (26)

where G(s,s’;7) is the equilibrium Green’s function, i.e.,
the probability of finding stress s’ at time ¢ if the stress

- %<d>(7'=0)s(1') Yo=— f_wwds’s'Po(s’)f_wwds D(s)

=f_°° ds’s’Po(s’)f__oo ds

Because J (s) satisfies Eq. (20) it is now clear that Eq. (25)
is obeyed.

III. SOME SIMPLE MODELS
A. Gaussian model

In this model the free energy is assumed to be quadra-
tic in s:

F(s)=1las?. 29
The equilibrium s-probability distribution is a Gaussian
172
a _ 2
P — | &P (1/2)aBs , 30
o(s) o e (30
which implies
2 1
=—. 31
( S )0 p ,B (31)
The “equation of motion” for s is
$(t)=—pas(t)+&(t) . (32)

If Eq. (32) is multiplied by s (0) and averaged, one finds
L (s0()g=—palsOs(n)g (1>0). 33

The solution of Eq. (33) which satisfies Eq. (31) is
(s(O)s(t))0=“&IEe_““' (t>0). (34)

The calculation of J(s) is straightforward; from Eq. (21)
one finds

J(s)=e(1/2)aﬁ52fwBs:e—(1/2)aﬁs'2dsl=_1_ ] 35)
s a
The Smoluchowski equation (13) thus is

oP _ d A a%p

ot 3s l {,uas o P|+ukg T———as2 . (36)

J(S)I_

were s at ¢t =0. By substituting into this expression
the time-integrated version of detailed balance
Py(5)Gq(s,s";7) =Py(s')Gy(s',s;7), one finds

d —
i (®(1=0)s(7))o

oG,
(s',s;7) . (27)
or

=——f_°° ds’s’Po(s’)f_oo ds ®(s)

The Green’s function considered as a function of the
second variable satisfies Eq. (11), of course, and therefore
one gets

3 |dF u Gy
b | 560

ds | ds B 9s?

1 dJ .

B ds Gy(s',s;7) . (28)
—

From Eq. (36) a simple equation for the average (s(t))y
may be derived by application of the obvious identity

]

d
Z(S(l))y=f_

Substituting Eq. (36) into Eq. (37), one finds after partial
integrations

d _ y(2)

Z(S(t»“/'_ pals(t)) + it (38)
As usual it is assumed that the shear rate “field” y(¢) is
introduced gradually in the distant past. The solution of
Eq. (38) which vanishes as t — — 0 is

O e 39)

sa—P(s,t)ds . (37)
ot

0

By means of Eq. (34) this may be rewritten as
(s(t))y,:ﬁfow(s(())s(f))o’}'/(t —r)dT . (40)

Equation (40) is nothing but the prediction of linear-
response theory [Eq. (5)]. Thus, the Gaussian model is
linear for all displacements.

B. Box model

This model is defined by

0, |sl<sg

F(s)= (41)

w0, |s|>so "
The model is named after the box model in elementary
quantum mechanics; it should not be confused with the
box-model distribution of relaxation times sometimes
used in rheology [9]. Since there is a maximum value of
the stress, the box model must exhibit shear thinning at
large shear rates. To find the nonlinear viscosity 1(y) we
need to determine J(s) first. In the present case Eq. (20)
reduces to dJ /ds = —Bs. The solution of this equation,
which satisfies the boundary conditions
J(”“So):J(So)zo, is
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J(s)=""(s3—s2) . (42)

N ™

The @ function of Eq. (23) thus becomes
_B
<I>(s)———2;(s%s~§s3) . 43)
For a given shear rate y, the stationary solution of Eq.
(13)is
P(s)=N"'eP1®) (|5 <s,) , 44)

where N is a normalization constant, and P(s)=0 for
|s|>sq. If the dimensionless shear rate

o P50
u
is introduced, one finds from Eq. (44)

14 (45)

Ve 71 /2=(3/6)) g4
= —1
{s;=50 f‘ o7 =360 g (46)
-1
From this the nonlinear viscosity ={s)/y is readily
evaluated. The result is shown in Fig. 1(a) and is not un-
like that seen in polymeric liquids. In the linear limit one
finds, by expanding Eq. (46) to first order in 7 *, the shear
rate independent viscosity 7, given by

_ 2B}
Moo= 150

The equilibrium dynamics is governed by the simple
diffusion equation [Eq. (11)]

(47)

P _p 3P

ot B as?’ (48)
subject to the boundary conditions

3 (s=—s9) 3 (s=s59)=0. (49)

The eigenfunctions of this problem are
cos[nm(sqg—s)/(2sy)] (n=0,1,2,...). From this one
finds by standard methods [10] that the equilibrium
Green’s function is given by

, o 1 o 1 e,
Gy(s,s ;t)_E;()—+n2='|;()_e cos[A,(sg—s)]
Xcos[A,(so—s")], (50
where
A==n, 0,=EA2 (n=1,2,...). (51)

259 " B
It is now easy to derive an analytical expression for the
frequency-dependent viscosity (). Since the equilibri-
um probability distribution is Py(s)=1/(2sy), the auto-
correlation function becomes

So ds
—So 2S0

(s(O)s(t))0=f f_so ds'ss'Gyls,s';t) . (52)
o

From Egs. (50) and (52) and the fluctuation-dissipation

theorem [Eq. (4)], one finds

()= 32Bs} 1
me 774 oddnn4(ia)+a>,,) )

(53)

In the zero-frequency limit Eq. (53) reduces to Eq. (47)
via the identity [11]

1,1 1 s

16+36+56+ 960
Figure 1(b) shows the real part of n(w). The spectrum
contains infinitely many relaxation times but these are
hardly visible, being completely dominated by the funda-
mental frequency o,. In effect, () is almost indistin-
guishable from the prediction of a simple Maxwell model
where Ren(w) is proportional to @ 2 for @— .

Only in the relaxation towards equilibrium from a

(54)

1
(a)
(o]
2
2 -1r
Q
2
>
o 2T
o
°
_3 =
_4 1 s . L
-1 o) 1 2 3 4
logIO(Shearrate)
1
(b)
0]
7}
Q
2 27
2
g -t
- |
2 -4
°
5}
-6 | L 1 e
-2 -1 (0] 1 2 3

lo 9 [Frequency]

FIG. 1. Box-model predictions for the viscosity. (a) shows a
log-log plot of the steady-state viscosity relative to the linear
viscosity, as a function of the dimensionless shear rate given by
Eq. (45). At large shear rates the viscosity varies as the inverse
of the shear rate; this is a consequence of there being a max-
imum possible stress in the model. (b) shows a log-log plot of
the real part of the frequency-dependent viscosity relative to the
zero-frequency viscosity, as a function of the dimensionless fre-
quency w/w,. Despite the fact that the model has infinitely
many relaxation times, the longest relaxation time dominates
the frequency dependence completely. In effect, the frequency
dependence is almost indistinguishable from that of a standard
Maxwell model where the real part of the viscosity varies as » ™2
at large frequencies.
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strongly nonequilibrium state do the higher harmonics
give significant contributions. If (s(z)), denotes the
average stress, given the value s at t =0, one has obvious-

ly
(s(0)y= [ 5'Gols,s'st)ds’ . (55)
So

Relaxation from a state with probability distribution P(s)
at t =0 is thus given by

(st)p=["

Two well-known examples are stress relaxation after ces-
sation of a steady flow, and stress relaxation after a sud-
den shear displacement starting from equilibrium [1]. In
the first case, the probability distribution P (s) is given by
Eq. (44) at t =0. In the latter case, after the sudden shear
displacement given by y(#)=1v,5(t), it is possible to show
that P(s) is given by
2As,

—Bygs
Pls)= , A=e 0 (57
T T+ Mso—(1—M)s 2 ¢ 67

(s(t))P(s")ds’ . (56)

In both cases P(s) is strongly peaked around s=s,.
From Eq. (50) we find

—w,t
"cos[A,(sy—s

G))==3 —

2
Ooddnl

)] (58)

This implies

s—{s(0), == —2( 1—e “")cos[A,(so—s)]. (59)
50 odd n )"

The interpretation of Eq. (59) is as follows. Whenever ¢ is

so large that A, (sq—s)<<1 for all n with w,t <1, the

cosine factor may be ignored altogether, and below a lim-

iting n=p given by w,t =1, the exponential may be ex-
panded to first order. ertmg p=at " '2, one has

s=(s(0),=C, [rdn+C, [ Dhari2, (60)
P n

where C; and C, are constants. At very short times the
quantity s —{s(z)), is exponentially close to zero. Then
according to Eq. (60) comes a range of times where this
quantity increases like #!72, and finally it converges to s.
A similar result applies to relaxation from a state with
probability distribution P(s,t=0), since

(s00))p—(s(e)) p= [ [s—{s(6)), 1P(s, =0)ds
0

(61)

If the width of P(s,t =0), As, is defined by the integral of

P from s,—As to 5o+ As being 1, it is not hard to show
that
~0, t<<t,
(s(0))p—(s(2))p { xt!? 1 <t <<t,, (62)
~(s(0)), t,<<t
where
B(As)z t2=5s(2, . (63)

In the case of relaxation after a sudden cessation of a
steady shear flow, As is given by [compare Eq. (44)]

v 1

— . (64)
soB® 7
In the case of a sudden large shear displacement, y,, As is
given by [compare Eq. (57)]

(As )=~

‘BYOSO

As =2s5,e (65)

Note that, in both cases, the non-Debye character of the
relaxation is apparent only because we have considered
the quantity (s(0))p,—{s(#))p. .If one looks at just
(s(2)) p, this quantity would be hard to distinguish from
a simple exponential decay in time.

C. Cosine hyperbolic model

A phenomenological model for stress relaxation was
proposed by Tobolsky and co-workers in the 1940s [3-5].
The model is a Maxwell element consisting of a Hooke’s
law spring and a non-Newtonian dashpot in series, the
viscosity of the dashpot obeying the Eyring viscosity
equation. The model leads to

y=A$s+Bsinh |— |, (66)

So

where A4, B, and s, are constants. Equation (66) repro-
duces Eyring’s viscosity equation and predicts a logarith-
mic stress relaxation at constant extension: At large

s(t =0) one has approximately §= —constXexp(s/s,),
which implies at intermediate times [4]
s(t)y=a—pBIn(t) . (67)

Both predictions of Eq. (66) mimic experiment on typical
polymeric liquids. The model, however, does not take
into account thermal fluctuations. The formalism
developed in Sec. II allows one to construct a model
based on Eq. (66) which is consistent with statistical

mechanics. Since relaxation towards equilibrium is
governed by § = —const. Xsinh(s /s,), the obvious choice
for F(s) is
F(s)=f,cosh A ] . (68)
So
The Langevin equation corresponding to Eq. (68) is then
s——-pio-smh +&(2) . (69)
So So

We now proceed to investigate this model, being particu-
larly interested in to which extent it reproduces the pre-
dictions of Eq. (66).

First the nonlinear steady-state viscosity is considered.
At low temperatures it is possible to derive an analytical
expression for the viscosity. The derivation is given here
for a general F(s). If (s ) denotes the average of s during
a steady shear flow, one has from Eq. (12) at low tempera-
tures where fluctuations are small
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7?J(<s>)=/.tij£((s)) . (70)

The quantity (s ) is a function of . If the derivative of
this function is denoted by (s)’, Eq. (70) implies by
differentiation

.dJ, \,_ d’F, \,
J+y ds<s> B3 (s)". (71)
Combining this with Eq. (20) leads to
— ’ dZF_ Y, E_E —_
J=(s) h o 257 () } (72)

For B— oo the term in the inner parentheses must vanish.
In conjunction with Eq. (70) one finds

2

()= [ 5y, (73)
4 dS
or for the viscosity
2
n= ﬁ 7}7&)—‘— . (74)
—d;( (s))
For the cosh model we thus have
_ (s) /s 2 75)
=70 V' Ginh({s) /sg) |
where
4
1 So
=—— (76)
T2

is the linear viscosity. Perhaps surprisingly, one does not
recover the Eyring viscosity expression

(s)/sq

~ 0 Sinh((s ) /sg) 7

7

but, as is clear from Fig. 2, the cosh model viscosity may
be fitted reasonably well by Eq. (77).

Consider now relaxation towards equilibrium from a
nonequilibrium state with stress s. At low temperatures
J(s) may be found explicitly from Eq. (21), which for
B— o reduces to

2
S5 s/sq
J)=———F""7""—. 78
() fo sinh(s/sq) 78
When substituted into Eq. (12) this leads to, in the zero
noise limit,

. Jfo sinh(s/sq)

f3 sinh®(s/s,)
s4 o2 27000
53 s/sg 53

s, (79)

This looks nothing like Eq. (66). But again we find the
nonlinear viscosity given by Eq. (75). Furthermore, for
constant elongation, s relaxes according to

So

§= —/.L—;—O—sinh , (80)

0

lo 90 (Viscosity)

lo 90 (Shearrate)

FIG. 2. Log-log plot of the steady-state nonlinear viscosity of
the cosh model. The nonlinear viscosity is shown relative to the
linear viscosity as a function of the dimensionless shear rate
v /(sq/7M0). The nonlinear viscosity of the cosh model is not
identical to the Eyring viscosity of Eq. (77) (marked by dots).

as expected from Eq. (69).

A final correspondence of the cosh model to Tobolsky’s
phenomenological model is the frequency-dependent
viscosity. As is the case for any differential constitutive
relation [1], Eq. (66) reduces to the Maxwell model in the
linear limit. In the cosh model one might expect a more
interesting frequency dependence, at least at high temper-
atures where the sinh factor of Eq. (69) cannot be re-
placed by a s? factor. But it turns out that even at high
temperatures the autocorrelation function (s(0)s(z)), is
actually very close to an exponential (which corresponds
to the Maxwell model). What happens is that the loga-
rithmic s relaxation of Eq. (80), even at quite short times,
is killed by the s diffusion due to the noise term.

D. Power-law model

As a final example we briefly discuss the power-law
model where

So

F(s)=f, (n>0). (81)

The fact that F(s) is nonanalytical at s =0 is insignificant.
The case n =2 is the Gaussian model and the n — o lim-
it is the box model.

The power-law model makes sense only for n > 2. To
prove this, the low-temperature limit is considered. For
B— o, J(s) may be evaluated asymptotically from Eq.
(21). Writing s'"—s"=ns" ~I(s'—s), one gets

o _ n n—1;.r__
J(S)zﬁf ds's'e B(fo/sg)ns (s'—s)
cg(sh ) Tl=g27" (82)

Thus, whenever y is positive there is a “force” propor-
tional to s>~ " working to increase s. The “restoring
force” from the potential varies as s” ~!. This force must
dominate at large s in order to avoid s running off to
infinity, thus n—1>2—n or n>3. Mathematically,
there is no normalizable stationary state whenever n <32.
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The border case n=3 leads to a model which is well
defined up to a certain shear rate, above which s runs off
to infinity. This corresponds to there being a phase tran-
sition at a definite shear rate to a state of infinitely high
viscosity.

To estimate the viscosity we use Eq. (73), which implies

2
. 1 |dF m—3
o= |— | « . 83
VRS ds s (83)
This implies
n=s/y < pl4m/2n=3) (84)

For 2<n<2 the model exhibits shear thickening,
whereas for 2 <n there is shear thinning. The case n =2
gives a shear-rate-independent viscosity, as shown al-
ready.

IV. DISCUSSION

The model of stress fluctuations considered in the
present paper involves several nontrivial assumptions.
The liquid is regarded as divided into “regions,” and
correlations between stress fluctuations of different re-
gions are ignored completely. These assumptions are
made for simplicity, but may be unrealistic since elastic
forces are long ranged. The region picture becomes even
harder to justify when a shear flow is considered. Such a
flow deforms the regions and the picture can only be
maintained whenever the longest correlation time is
smaller than the inverse shear rate.

The main result of the paper is the proof that, if equi-
librium stress fluctuations follow a Langevin equation,
there is only one possible stress dynamics in nonequilibri-
um which is consistent with the principle of virtual work.
Not only is the nonlinear response uniquely determined,
but this is true also for the stress fluctuations in none-
quilibrium. Crucial to this theorem is the assumption of
a Langevin dynamics for the stress. This is a phenome-
nological postulate, but it should be emphasized that
Langevin dynamics is the ‘“‘canonical” guess if one is to
discuss dynamics purely from a knowledge of equilibrium
statistical mechanics. There is no other way of estimat-
ing the dynamics from a knowledge of only the equilibri-
um free energy F(s). But, of course, this does not
guarantee that the Langevin equation leads to correct re-
sults.

The assumption of linear coupling of the shear rate
“field” in Eq. (12) is not essential. In fact, it is easy to
show that the principle of virtual work implies the cou-
pling must be linear. This is because the shear rate does
not occur in Eq. (16).

The formalism developed may be generalized by re-
placing the term “stress” (which is the transverse
momentum current) by any other current. One thus has
a method for predicting the nonlinear response from a
knowledge of equilibrium current fluctuations. The con-
sidering of currents as independent degrees of freedom
has become popular in recent years, being the basis of ex-
tended irreversible thermodynamics [12,13]. The ap-
proach of Sec. II may be regarded as a statistical-

mechanical counterpart to extended irreversible thermo-
dynamics.

To illustrate the formalism a few simple models were
studied in Sec. III. The Gaussian model leads to an ex-
actly linear response even at large shear rates, reducing
simply to the standard Maxwell model. The fact that the
Gaussian model is linear is quite satisfactory, since a
similar result is valid in ordinary statistical mechanics.
Here, strictly Gaussian equilibrium fluctuations of, e.g.,
the magnetization, implies a field-independent magnetic
susceptibility.

A more interesting model is the box model. It predicts
a nonlinear viscosity (because there is a maximum possi-
ble stress), and a spectrum of relaxation times. In equilib-
rium this spectrum is not really visible, however; the au-
tocorrelation function {s(0)s(?)), is approximately an
exponential, leading to almost a Maxwell-type frequency
dependence of the viscosity. Only in the relaxation from
a strongly nonequilibrium state does the spectrum play
any significant role, and even here the lowest eigenfre-
quency dominates the overall picture.

The cosh model was constructed to mimic Tobolsky’s
phenomenological model for stress relaxation. But al-
though the zero noise relaxation equation is equal to
Tobolsky’s [Eq. (66)], the predictions of the model are not
identical to those of Eq. (66). This is an illustration of a
point made by van Kampen [7] that, by adding a noise
term to a phenomenological model of the form § = f(s),
some of the properties of the equation are lost because of
the noise. In the case of the cosh model, the properties
are retained in a qualitative sense, though. Thus, there is
an Eyring-like viscosity in the model (Fig. 2), and the fre-
quency dependence of the phenomenological model and
the model of Eq. (69) are almost equal. The latter point
may seem surprising, given the fact that the cosh model
leads to a logarithmic relaxation towards zero in the zero
noise limit (which, as is well known, corresponds to a
spectrum of relaxation times varying like 7 !). However,
just as in the box model, the spectrum is not significant in
equilibrium where the noise term completely dominates
the autocorrelation function, resulting in an almost ex-
ponential decay.

The cosh model corresponds to an exponentially in-
creasing free energy F(s). The case of F(s) increasing fol-
lowing a power law was also considered in Sec. III. [The
case of a logarithmically increasing F(s) leads to an in-
consistent model where s runs off to infinity whenever
y7-0.] The power-law model is consistent only for n > 2,
n =3 being a border case where the model makes sense
for not too large shear rates. Whenever 3 <n <2 the
model exhibits shear thickening, whereas 2 <n corre-
sponds to the experimentally more common case of shear
thinning. The case n =2 is the Gaussian model, and the
limit n—>oco is the box model. A closer analysis than
given in Sec. III reveals that the shear thickening in the
case 2 <n <2 is a consequence of one not having J(s)—0
as |s|— oo [while for 2<n J(s)—0 as |s]— »]. Since
J(s) may be interpreted as an s-dependent infinite fre-
quency shear modulus, the study of the power-law model
leads to a novel view on the origin of nonlinearity: Non-
linearity may be viewed as a consequence of a stress-
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dependent infinite frequency shear modulus G . The
case when G, increases with increasing stress corre-
sponds to shear thickening while a decreasing G (i.e.,
softening) corresponds to shear thinning. The Gaussian
linear case n =2 corresponds to a stress independent G , .
A final thing to be noted about the power-law model is
that in the zero noise limit this model has a power-law
time dependence of the stress relaxation, as is easy to
show.

The predictions of the models are approximately on
the level of differential constitutive relations: these have
realistic nonlinear steady-state viscosities but only a sim-
ple Maxwell frequency dependence of the viscosity [1].
Compared to differential constitutive relations, the
presently considered models have the advantage of being
consistent with statistical mechanics. Thus, the method
presented may be regarded as a means of modifying
differential constitutive relations to include thermal fluc-
tuations. The modification, however, is nontrivial in the
sense that the differential constitutive relation is not
recovered exactly in the low-temperature limit, as shown
in detail for the cosh model.

Several important features of polymeric liquids are not
mimicked by the models of Sec. III. The predicted al-
most single relaxation-time frequency dependence of the
viscosity is very far from that observed in polymeric
liquids. Another important point which is not captured
by the models is the fact that experimentally, nonlinearity
sets in at a shear rate about equal to the frequency mark-
ing the onset of frequency dependence of the viscosity

[1,14]. Finally, the temperature dependence of the
viscosity is weak and there is a well-defined viscosity in
the zero-temperature limit. While this last point could be
handled by assuming the mobility u is temperature
dependent, the two other points are quite serious, indeed.
A further objection is the fact that in the present model
there is time reversibility in a steady shear flow: The
steady-flow Langevin equation obeys detailed balance for
a suitably chosen energy function [compare Eq. (26)]. In
a real flow one expects a genuine violation of time reversi-
bility.

In conclusion, the types of models studied in Sec. IIT
are not satisfactory as models of reality. To arrive at
more realistic models one has to consider several stress
coordinates interacting with each other, for instance by
taking into account the spatial variation of the stress.
This leads to a field theory in which the free energy is a
functional of the stress field. If this function has several
minima, the Langevin dynamics gives thermally activated
relaxation times (just as in the description of chemical re-
actions), and thereby more realistic temperature and fre-
quency dependences. Also, it may be shown that in a
model with more than one degree of freedom there is
genuine time irreversibility in any shear flow.

ACKNOWLEDGMENT

This work was supported by the Danish Natural Sci-
ence Research Council.

[1] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics
of Polymeric Liquids, 2nd ed. (Wiley, New York, 1987),
Vols. 1 and 2.

[2] M. Doi and S. F. Edwards, The Theory of Polymer Dynam-
ics (Clarendon, Oxford, 1986).

[3] A. Tobolsky and H. Eyring, J. Chem. Phys. 11, 125 (1942).

[4] A. V. Tobolsky and R. D. Andrews, J. Chem. Phys. 13, 3
(1945).

[5S]R. D. Andrews, N. Hofman-Bang, and A. V. Tobolsky, J.
Polym. Sci. 3, 669 (1948).

[6] R. Becker, Theory of Heat (Springer, Berlin, 1967).

[71N. G. van Kampen, Stochastic Processes in Physics and
Chemistry (North-Holland, Amsterdam, 1981).

[8] M. Doi, J. Chem. Phys. 79, 5080 (1983).
[91J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed.
(Wiley, New York, 1981).
[10] P. M. Morse and H. Feshback, Methods of Theoretical
Physics McGraw-Hill, New York, 1953).
[11] M. R. Speigel, Mathematical Handbook, Schaum’s Outline
Series in Mathematics (McGraw-Hill, New York, 1968).
[12] D. Jou, J. Casas-Vazquez, and G. Lebon, Rep. Prog. Phys.
51, 1105 (1988).
[13] D. Jou, J. Casas-Vazquez, and G. Lebon, J. Non-Equilib.
Thermodyn. 17, 383 (1992).
[14] W. W. Graessley, Adv. Polym. Sci. 16, 1 (1974).



