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A method is presented that makes computer simulations of hopping conduction in symmetric hopping
models with thermally activated jump rates possible at arbitrarily low temperatures. The method uti-
lizes the ac Miller-Abrahams electrical equivalent circuit which is systematically reduced by the general
star-mesh transformation until one ends up with an admittance matrix referring to the voltage genera-
tors. From this matrix the conductivity is easily calculated. Results from simulations of hopping in two
dimensions are presented and compared to the predictions of the effective-medium approximation
(EMA). Generally there is good agreement, with some deviation at the lowest temperatures. It is shown
that, as the temperature goes to zero, the frequency-dependent conductivity in the EMA becomes
universal, i.e., independent of the activation energy probability distribution. The computer simulations
confirm the existence of universality, although there is no exact agreement between the simulations and

the EMA universality prediction.

I. INTRODUCTION

ac conduction in disordered solids like amorphous
semiconductors, ionic conductive glasses, polymers, or
metal-cluster compounds show a number of common
features.'® Above a characteristic frequency w,,, the
conductivity becomes strongly frequency dependent,
varying as an approximate power law with an exponent
between 0.7 and 1.0. The ac conductivity is always less
temperature dependent than the dc conductivity, and at
low temperatures the ac conductivity becomes almost
temperature independent. A final ubiquitous observation
is the Barton, Nakajima, and Namikawa (BNN) rela-
tion’ 1> which essentially expresses the fact that the
characteristic frequency w,, is proportional to the dc
conductivity ¢(0). In particular, these two quantities al-
ways have the same activation energy.

The most thoroughly studied models for ac conduction
in disordered solids are the so-called hopping mod-
els."* 16 A hopping model describes jumps of charge car-
riers in a stochastic framework. The disorder is usually
mimicked by assuming that the transition rates vary ran-
domly according to some probability distribution.
Linearized hopping models are amenable to simple ana-
lytic treatment. Linearized hopping models, henceforth
just referred to as hopping models, describe the motion of
noninteracting charge carriers. Thus, one ignores self-
exclusion as well as Coulomb interactions.

Recently, the role of Coulomb interactions has come
into focus.!”!® To include the effects of Coulomb repul-
sion, a “macroscopic” model was studied by the present
author,!®? following previous work by Springett,”! Web-
man et al.,”> Sinkkonen,”® and Fishchuk.?* When
Maxwell’s equations for an inhomogeneous semiconduc-
tor are discretized, one arrives at an electrical equivalent
circuit with nodes placed on a cubic lattice and links be-
tween neighboring nodes consisting of a resistor and a
capacitor in parallel.?>?>2* The capacitor currents are
Maxwell’s displacement currents while the resistor
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currents are the free charge currents.” Computer simu-
lations of this model have shown® that the effective
medium approximation (EMA) for random admittance
networks?® works very well, even at low temperatures
where the spread in conductances is very large. In partic-
ular, the simulations confirmed the EMA prediction'®%
of a universal frequency dependence of the conductivity
at low temperatures, independent of the probability dis-
tribution of the local conductivity activation energy. If
one defines & =o0(w)/0(0) and $=i® where & is a suit-
able dimensionless frequency, the EMA equation for the
universal frequency-dependent conductivity in the mac-
roscopic model is

oIn(d)=7 . 1)

Reference 19 gave the first general derivation of Eq. (1)
and presented the first computer simulations confirming
it. Equation (1), however, appeared in the literature al-
ready in 1980 in a study of the hopping model with elec-
trons tunneling between positionally disordered sites.2®
The recent results for the macroscopic model therefore
raise a number of questions. Is the EMA for hopping
models as reliable as it is for the macroscopic model? In
particular, as the temperature goes to zero, does the
EMA predict Eq. (1) as the universal low-temperature
frequency dependence of the conductivity even for hop-
ping models with thermally activated jump rates? If this
is the case, is the universality confirmed by computer
simulations? To answer the last question, a new numeri-
cal method must be developed since neither the standard
Monte Carlo type method nor, e.g., the Gauss-Seidel re-
laxation method makes it possible to go to low tempera-
tures where the jump rates vary over several decades
(often more than 50 decades).

The present paper introduces a new method for com-
puter simulation of hopping models. The method allows
one to go to arbitrarily low temperatures without any
computational “slowing down.” The method utilizes the
Miller-Abrahams equivalent circuit which is systemati-
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cally reduced by eliminating nodes according to a trans-
formation well known from electrical engineering. Be-
fore this method is presented in Sec. III, Sec. II briefly re-
views the basic equations of symmetric hopping models
and the EMA equation for the frequency-dependent con-
ductivity in hopping models. Section IV reports the re-
sults of computer simulations in 2D and compares the
simulations to the EMA predictions. In Sec. V, the low-
temperature limit of the EMA is studied. It is shown
that Eq. (1) is predicted to be the universal low-
temperature conductivity even for hopping models. Also,
Eq. (1) is compared to the results of computer simula-
tions. Finally, Sec. VI contains a discussion.

II. SYMMETRIC LINEAR HOPPING MODELS

This section briefly reviews symmetric linear hopping
models and their approximate solution in the EMA.
Since several reviews have been written on this sub-
ject, 1471627730 only the most necessary background is
given here.

For simplicity we consider first hopping in one dimen-
sion in thermal equilibrium, i.e., with no external electric
field. A model solid is regarded in which the charge car-
riers can be only at regularly spaced discrete sites. Let N;
denote the average number of charge carriers at site i.
This number changes in time because some charge car-
riers leave site i and others arrive from the neighboring
sites i—1 and i +1 (only nearest-neighbor jumps are al-
lowed). If I'(i —j) denotes the probability per unit time
of a jump from site i to site j=i=*1, the basic equation
for the average N;’s is

dN;

_Ci.r-_———[l"(l—>l+1)+r(l—>l—1)]Ni

+T(i—1—i)N,_+T(i+1>i)N;,, . ()

This equation is a simple example of a master equa-
tion.*:%2

In symmetric hopping models one has symmetric equi-
librium jump probabilities,

Ni—j)=T(j—i)=Iyi,j) (j=ixl). (3)

Introducing the probability of finding a charge carrier at
site i, P;=N;/N where N is the total number of charge
carriers, and, when Eq. (3) is taken into account, Eq. (2)
becomes

dP;

_?d—tl‘:ro(l—l,l)(P,_I_P,)_Fo(lyl+1)(P1_Pl+l) N

4)

The stationary solution of Eq. (4) corresponds to all sites
being equally probable. Any initial nonhomogeneous dis-
tribution of charge carriers will eventually equilibrate
through “diffusion” of charge carriers away from densely
populated sites.

Equation (4) is linear. This is the mathematical expres-
sion of the fact that the equation deals with noninteract-
ing charge carriers. The charge carriers cannot feel each
other: neither is Coulomb repulsion taken into account
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nor is “self-exclusion” (i.e., that there is room for only
one charge carrier at each site). In some papers dealing
with hopping models, more general nonlinear hopping
models are formulated, attempting to take these effects
into account. Equation (4) is then arrived at by lineariz-
ing the general hopping equation. However, as pointed
out by Shklovskii and Efros, this linearization is not ex-
act, but involves uncontrolled approximations.*

For systems of tunneling electrons, the transition rates
depend exponentially on the tunneling distance (as well as
on the difference of the site energies). In the present pa-
per we are concerned with the ‘““classical” case where the
jump rates are thermally activated, i.e., where one has

BE

[oli,j)=Tge = “ (j=i+tl). (5)

Here p=1/(kpT), while E; j is the so-called activation
energy —the barrier to be overcome. The prefactor I'y is
the “attack frequency” which is usually of order 10'2 Hz
(a typical phonon frequency). Equation (5) is relevant for
ionic conduction and for certain cases of polaronic con-
duction.

In symmetric hopping models one usually assumes that
the jump rates vary randomly, so the model is completely
characterized by the activation energy probability distri-
bution p(E). Figure 1 shows an example of the potential
for a symmetric hopping model in 1D with thermally ac-
tivated jumps. At low temperatures the jump rates vary
several orders of magnitude, and a charge carrier makes
many jumps between pairs of sites separated by low bar-
riers. Via the fluctuation-dissipation theorem this implies
that the conductivity depends strongly on frequency.

Before considering the effect of an electric field, we
briefly discuss the boundary conditions. The bulk
behavior of the model is calculated by letting the volume
go to infinity. In any computer simulation, however, only
a finite sample is present and one has to specify the
boundary conditions. The case of periodic boundary con-
ditions is characterized by requiring P, =Py if the sites
are numbered from O to N. An alternative is the case of
blocking electrodes, i.e., to modify Eq. (4) at the end
points so that no charge carriers may pass beyond these.
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FIG. 1. Potential felt by a charge carrier in a one-

dimensional symmetric hopping model with thermally activated
jump rates. If B denotes 1/(kpzT) and E is the energy barrier
height, the rate for jumps between two sites is [ye ~?E.
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A third possible boundary condition is the case of perfect-
ly conducting electrodes. This is arrived at by imposing a
fixed probability at the end points:

P0=PN=C0nSt . (6)

Equation (6) corresponds to having no accumulation at
the electrodes, allowing completely free passage for the
charge carriers. This boundary condition is used below
in the computer simulations.

In an external electric field the symmetry of the jump
rates is broken, since it becomes more favorable to jump
in the direction of the field than opposite to it (assuming
the charge g >0). If the energy barrier is placed symme-
trically between the two charge-carrier sites and a
denotes the distance between neighboring sites, the jump
rates are modified'* according to [note that E in Eqgs.
(7)-(9) below is the electric field and not an energy bar-
rier]

[(i—i+1,E)=Tyi,i+1)ePrE?
(7
T(i+1—i,E)=Tyi,i+1)e PwE2

In the linear limit (which defines the ordinary conductivi-
ty) Eq. (7) is expanded to first order in the electric field:

T(i—i+1,E)=Tyi,i+1)

’

1 +E——B‘21"

C(i+1—i,E)=Tyi,i+1)

__.Pqa
1E2

Consequently, Eq. (2) in terms of the P,’s becomes

dP,
Tzro(i_l’i)(Pl—l_Pl)_Fo(i’i+l)(Pl_Pl+l)

+Eﬁgi[ro(i—1,i)(P,._,+P,->

—Toli,i +1)(P,+P,, )] . 9)

In this equation the electric field may depend on time in
any arbitrary way.

The complex frequency-dependent conductivity o(w)
is defined as the ratio between the spatially averaged
current density and the electric field in a steady state,
where the electric field varies periodically as e’®. The
Kubo formula® expresses the frequency-dependent con-
ductivity in terms of the current-current time autocorre-
lation function. For hopping models it is convenient to
rewrite the Kubo formula by performing two partial in-
tegrations. This leads> to the following expression

ng’w*

o(w)=— 2k, T

JTCBx2(t))oe (10)
Here, n is the average charge carrier density, {( Ax 2(t))o
denotes the equilibrium mean-square displacement of a
charge carrier in time ¢, and a convergence factor
lim,_, ge ~¢ is implicitly understood in the integral.

For a homogeneous system (i.e., with all jump rates
equal) the mean-square displacement is determined from
the diffusion constant D, via Einstein’s equation

11711

(Ax(t))g=2Dt. As is easy to see, Eq. (10) then gives
the frequency-independent conductivity o =ng’u where
u is the mobility which is given by the Nernst-Einstein
relation u=D,/(kgT). In the time t a charge carrier in
a homogeneous system with equilibrium jump rate I per-
forms on the average N =2TI't jumps. Therefore, one has

(Ax*(t))y=Na*=2la% ,

which implies D, =Ta? Combining these equations, one
finds for the frequency-independent conductivity of a
homogeneous system

2.2

nqg‘a
=—2—T7T. 11
kgT r (an

For any inhomogeneous system, the high-frequency
limit of the conductivity is given by a similar expression.
It can be shown3® that () is given simply by the aver-
age jump frequency:

2.2
:nga
o(w) kT (T) . (12)

It is convenient to redefine the conductivity and absorb
the prefactor ng2a?/(kzT). In this “rationalized” unit
system, which will be used henceforth, Eq. (12) simply be-
comes (w0 )={(T).

It is also possible to calculate the dc conductivity ex-
actly in one dimension.’® Thus, in 1D the high and low
frequency limits are in the “rationalized” unit system
given by

0'1_1)(0)=<r_1)—1 ’
(13)
UI_D(OO)=<F> .

The inequality 1<{(T'){T'"!) may be derived from the
Cauchy-Schwartz  inequality; it implies  that
01-p(0)<0;_p(w). In fact, it can be shown’’ for any
hopping model in any number of dimensions that the real
part of the conductivity is an increasing function of the
frequency.

Hopping models in D dimensions for D>1 are
straightforward generalizations of the one-dimensional
case. If P denotes the probability of finding a charge
carrier at site s, Eq. (4) is replaced by (for symmetric hop-
ping models)

d

—Ps= S Tols,s )Py —P,). (14)
t s

In the present paper the sites s are assumed to lie on a
simple cubic lattice and the sum is restricted to nearest
neighbors. The Kubo formula Eq. (10) is also valid for
D >1 where the mean-square displacement {Ax*(z)), is
in any of the D axis directions. The three above-
mentioned boundary conditions may also be applied for
D>1. In an external field, the concepts of blocking or
perfectly conducting electrodes make sense only for the
sample faces perpendicular to the field; it is natural to ap-
ply periodic boundary conditions to all remaining faces.
Even for D >1 it is convenient to use the “rational-
ized” unit system representing the conductivity in terms
of an equivalent jump frequency. In this unit system the
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high-frequency limit of the conductivity is for any D
given?®37 by

=(T) . (15)

For the dc conductivity, on the other hand, there is no
general analytical expression similar to Eq. (13) in one di-
mension. However, the temperature dependence of o(0)
is known; it is glven by

p— BEC

o(0)xe (D>1), (16)

where the so-called percolation energy E, in terms of the
activation energy probability distribution p(E) and the
link percolation threshold p, is given by

E
[ p(E)E=p, . (17)

For D=2 one has p, =1 exactly*! while for D =3 simula-
tions have shown that p, =0.2488.42

The calculation of the frequency-dependent conductivi-
ty in hopping models is a complicated problem. The
standard approximation for disordered systems is the
coherent potential approximation (CPA).*»* The CPA
is a mean-field approximation that gives an estimate of
the relevant Green’s function that has a number of at-
tractive analyticity properties. For hopping models, the
CPA is known as the effective medium approximation
(EMA) because it is derived by considering one ‘“link”
(i.e., jump frequency) of the lattice as embedded in an
“effective medium” mimicking the average surroundings.
Several papers!>263045=48 {erive the EMA equation. If
the complex frequency s =iw is introduced —referred to
below as the ‘“Laplace frequency”—the conductivity
o=o(s) in the “rationalized” unit system introduced
above is in the EMA given'® as the solution of the equa-
tion

< L ) —0. (18)
Do+[1—sG|T—0o)lr

In Eq. (18) the average is over the jump frequency proba-
bility distribution and sG is defined by

~_ dPk s
SG—fl—BZ 2m)? s+2Do[1—p(k)] ’ (19)

where the integral is over the first Brillouin zone
(—m<k;<w)and

D
p=L S coslk,) . 20)
D =
For s— o one has sG —1. Thus, Eq. (18) implies the
correct high-frequency limit Eq. (15). In the limit s —0
one has sG —0. Thus, the EMA equation for the dc con-
ductivity is

I'—o(0) _
<F+(D—1)a(0)>r 0. @b

For D =1 Eq. (21) gives the correct result Eq. (13).

To solve Eq. (18) numerically one needs to calculate
the quantity sG of Eq. (19). This is a standard exercise in
calculating the diagonal element of the Green’s function
for a random walk on a cubic lattice or, equivalently, for
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the quantum-mechanical tight-binding model. In 1D
one finds*>°
~1,2

1+4

sGp= (x=s/0) . (22)
In two dimensions one finds**>°
X 4 _
sG,p= Py it (x=s/0), (23)

where K is the complete elliptic integral of the first kind.
In three dimensions one finds*’

~ X T
s(;3D—2—7TZf0 t(@K[t(d)]d

4

x+6—2cos(¢)’ @4

x=s/o

t(d)=

Note that Egs. (22)-(24) all imply sG — 1 as s — o, as re-
quired by Eq. (19). A rough analytlcal approx1mat10n to
Eq. (24) is Hubbard’s Green’s function®

$G 1y = 2——— (
DT r6/x+VIF12/x

x=s/o). (25)

III. AMETHOD FOR THE NUMERICAL
EVALUATION OF THE FREQUENCY-DEPENDENT
CONDUCTIVITY IN HOPPING MODELS

The frequency-dependent conductivity may be evalu-
ated numerically in several ways. In principle, the prob-
lem is the straightforward one to solve a large system of
linear equations with complex coefficients; from the solu-
tion, the conductivity is easily calculated. The Gauss-
Seidel or the Jacobi relaxation methods®' are usually ap-
plied to such a problem. Unfortunately, they converge
much too slowly if the coefficients vary over several or-
ders of magnitude, as is the case when one wants to study
hopping at low temperatures. Overrelaxation methods®!
may be faster, but are still too slow.

An obvious way of evaluating the frequency-dependent
conductivity in hopping models is to use an equivalent of
a Monte Carlo simulation, simulating the charge-carrier
jumps in ‘“real” time. This method works fine at high
temperatures, but for S larger than about 10 the charge
carriers get caught and tend to jump backwards and for-
wards between two sites without moving away until after
thousands or millions of Monte Carlo steps. While this
behavior reflects the real physics of low-temperature hop-
ping, the method is clearly very inefficient.

We now proceed to describe an alternative method for
evaluating o(s), where a systematic reduction is applied
to the ac Miller-Abrahams (ACMA) equivalent circuit.
The reduction ends up with a frequency-dependent ad-
mittance matrix from which the conductivity is easily
calculated. To describe the method we first review the
one-dimensional ACMA equivalent circuit, and then
show how to reduce the circuit. Finally, the generaliza-
tion of the method to higher dimensions is discussed.
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To solve Eq. (9) one notes that for small electrical fields
the probabilities P; are only slightly different from the
average probability (P): P,=(P)+8P;. When substi-
tuted into Eq. (9) this gives to first order in € and &8P,
where e=Bqa{P)E is a dimensionless measure of the
electric field

d

—8P1=1"0(1-—

< 1,i (8P, _,—8P;)

—F0(1,1+1)(8P1_8P1+1)
+€[Toli —1,i)—Tyli,i+1)] . (26)

Consider now the ACMA electrical circuit shown in
Fig. 2(a). The capacitors all have capacity equal to one
while the (real) conductance between site i and i+1 is
Iyli,i+1). The voltage generators impose the potential
drop —ie from the capacitors to the ground. If the volt-
age at site / is denoted by U;, the Kirchhoff law express-
ing charge conservation is

%(U[+ie)=r‘0(i—1,i)( U,_,—U,)

_FO(i7i+1)(Ui_Ui+1)- (27)

FIG. 2. (a) ac
equivalent circuit of a symmetric hopping model in one dimen-
sion. All capacitors have unit capacitance while the conduc-
tance of the resistor between site i and site i +1 is equal to the

Miller-Abrahams (ACMA) electrical

equilibrium jump frequency T'o(i,i+1). The electric field in
the sample, for which € is a dimensionless measure, is reflected
in the voltage generators. The currents in the resistors are equal
to the currents in the hopping model [Eq. (30)]. Similar electri-
cal equivalent circuits exist in higher dimensions. Here, the
voltage depends only on the coordinate in the direction of the
electric field, and thus the capacitors in a plane perpendicular to
the field are all connected to the same voltage generator. This
fact is crucial for the numerical method for calculating the
frequency-dependent conductivity derived in Sec. III. (b)
Boundary conditions to the ACMA circuit in one dimension.
These boundary conditions correspond to perfectly conducting
electrodes [Eq. (6)].
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This equation transforms into Eq. (26) if one makes the
identification

Ui=8Pi_i6. (28)

Solving Eq. (26) therefore becomes equivalent to solving
the ACMA circuit.?”5273* To completely specify the
problem the boundaries must be considered.'* We use
perfectly conducting electrodes for which the boundary
conditions are 8P, =58Py =0 [Eq. (6)]. For i=0 this im-
plies U,=0 while for i =N the condition is Uy=—Ne.
These two boundary conditions correspond to the circuit
endings without capacitors shown in Fig. 2(b).

Before the ACMA circuit is “solved,” let us consider
the calculation of the frequency-dependent conductivity
from the solution. By definition, o(s) is the ratio be-
tween the spatially averaged current and the electric field
in a steady periodic situation. If (J ), denotes the spa-
tially averaged current in the field €, we have (where X is
a proportionality constant depending on the unit system)

N-1
(J)e=K 3 [Tli—i+1)P,—T(i+1—-i)P;;,]. (29
i=0

To first order in e=pqa ( P )E this expression via Egs. (8)
and (28) reduces to

(J)e=K 2 Loli,i+1)

= ( ) i+1
N-—1

=K 3 Toli,i+1)U;—U,,,) . (30)
i=0

At very high frequencies the capacitors may be ignored
and the potential drop across each resistor simply be-
comes €. In order to reproduce Eq. (13) for the high-
frequency conductivity, the general expression for the
conductivity in the “rationalized” unit system must
therefore be

—11\_7 2_ 0(i7i+1)(Ui_U1+1) (e=1). (31)

If Ip(i—i+1) denotes the current in the resistor from
site i to site { +1 when €=1, one has
1 N-—1
=— E Ip(i—i+1) (e=1). (32)
i=0

In the dc limit the capacitors are completely blocking
and only the voltage generator at the site i =N matters
[since here there is no capacitor, compare Fig. 2(b)]. The
ACMA circuit then effectively reduces to resistances in
series and the current is the same in each resistor. This
current is determined by the total resistance from i =0 to
i=N. Each resistor has the value 1/T'y(i,i+1) and the
total resistance is the sum of all resistors. When the
current thus determined is substituted into Eq. (32), one
finds the expression given in Eq. (13) for the dc conduc-
tivity of a 1D hopping model.

Returning now to the case of an arbitrary frequency
(but still in 1D), it is convenient to rewrite Eq. (32) in
terms of the current through each voltage generator. If
I,(i) denotes the current “upwards” through the ith
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voltage generator towards site i, charge conservation im-
plies

Ix(0—1)=1,(0),

IR (152)=Ix(0—1)+1,(1)=1,(0)+1,(1); 9
in general,

Ip(i —»i+1)=1,(0)+ - -+ +1I,(i). (34)
When substituted into Eq. (32) this gives

a=%l§0(N—i)IV(i) (e=1). (35)

Equation (35) suggests regarding the ACMA circuit as
an N port consisting of all the capacitors and the resistors
as “internal” elements with “external” nodes that are to
be subjected to the potentials —¢, ..., —Ne relative to
the ground defined by site 0. Such a circuit is character-
ized by a (frequency-dependent) symmetric matrix of ad-
mittances. This matrix is here defined by

N
I,()= 3 Y[i,j{(U~U,, (36)

j=0

where Y[i,i] may be any number. In particular, it is pos-
sible from Y[i,j] to calculate the generator currents for
e=1,
N
Iyi)=3 (j—iY[i,j]. 37)

j=0

Substituting this into Eq. (35) one finally arrives at

N N
o=L S 3 WN-iG-DYIi]. 38)
NS <o
The problem is now reduced to calculating the admit-
tance matrix. This is done by utilizing the general star-
mesh transformation well known from electrical engineer-
ing.> This transformation, which was first used for ran-
dom resistor networks by Fogelholm,*®%’ is a prescrip-
tion of how to remove nodes from a circuit without
changing the “external” properties of the circuit. Con-
sider any node in an electrical circuit connected to m oth-
er nodes by the admittances Y,,..., Y, . This is illus-
trated in Fig. 3 for the case m =5. The central node may
be removed by introducing new admittances between all
possible pairs of the m neighbor nodes. The new admit-
tance between the neighbor nodes i and j, Y, is given®
by
y.— Y;Y;

i e (39)

If some of the m neighbor nodes were already connected
by an admittance before the transformation, this admit-
tance is increased by the amount given by Eq. (39). What
does it actually mean physically that the new circuit is
“equivalent” to the old? This means that, for all possible
choices of potentials applied to the m neighbor nodes, the
same currents run from each of these nodes into the cir-
cuit. In this sense, the m neighbor nodes cannot detect
any difference before and after the transformation. Once
this condition has been specified, it is straightforward to
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FIG. 3. General star-mesh transformation of an electrical
circuit (Ref. 55). In this example the central node is removed.
This node is connected to five neighboring nodes by the admit-
tances Y,,...,Ys. After the transformation, all possible con-
nections between the five “external” nodes are created by, be-
tween the ith and the jth node, introducing the admittance
Y,Y;/(Y;+ --- +Y;). Physically, the fact that the new circuit
is equivalent to the old means that, for any “external’” potentials
applied to the five nodes, the same currents run into the circuit
before and after the transformation. The general star-mesh
transformation may be applied to the ACMA circuit of Fig. 2
and its higher-dimensional analogs. When all nodes have been
removed one is left with an admittance matrix Y[i,j] which
directly determines the frequency-dependent conductivity [Eq.
(38) in 1D or Eq. (40) in 2D].

derive Eq. (39).

When this transformation is applied to the ACMA cir-
cuit each of the ‘“internal” nodes indexed i=0,1,...,N
is removed. Eventually, one is left with all possible con-
nections between the “external” nodes. Each connection
has an admittance which specifies the corresponding ma-
trix element in the admittance matrix Y[i,j]. With this
method for evaluating o(s) for a hopping model, the
number of calculations that are to be performed is in-
dependent of the temperature. A further advantage is
that the present method, by proceeding through a num-
ber of simple algebraic operations on the circuit admit-
tances without any subtractions, introduces virtually no
numerical inaccuracies. Thus, the conductivity is evalu-
ated with a very high precision.

The method is easily generalized to higher dimensions.
Considering the case D =2, the ACMA circuit is a square
lattice here whose nodes are indexed by (i,k) where
i=0,...,Nand k=1,...,N. As in Fig. 2(a) each node
on the lattice is connected to the ground via a capacitor
and a voltage generator.!#>* Neighboring nodes are con-
nected by a resistor whose conductance is the equilibrium
jump frequency. The external electric field is assumed to
be in the direction of the x axis (indexed by i). This
means that the voltage generators have a voltage equal to
—ie€, independent of k. In effect, there is thus just one
voltage generator for each i. In the y direction we use
periodic boundary conditions so that the point (i, N +1) is
identified with the point (i,1). In the x direction the per-
fect electrode boundary condition is used. For calculating
the conductivity, all nodes (i, k) withi=1,...,N—1are
removed according to the recipe of Eq. (39). After the
reduction has been performed one ends up with an
(N+1)X(N+1) symmetric admittance matrix Y[i,j],
where both indexes refer to the x coordinates. The calcu-
lation of the conductivity from the matrix proceeds as in
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Eq. (38), except that a further division by N is necessary
to compensate for the fact that each “layer” perpendicu-
lar to the x axis has N parallel channels. Introducing an s
to remind of the fact that the conductivity is frequency
dependent, we thus get

N N
ols)=- 3 S (N-i—-DYlijis]. (40

N® =0 j=o
It is not clear in which order the nodes should be re-
moved to have the fastest algorithm. This point is impor-
tant because the removal of one node introduces several
new connections. And the more connections there are to
a given node, the more calculations are required for re-
moving it. The nodes should therefore be removed so
that as few new connections as possible are created. In
the original Fogelholm algorithm in each step one re-
moves the node with fewest connections to its surround-
ings.”” This works well for a system where most neigh-
boring nodes are not connected, as is the case close to the
link percolation threshold. In the present case, however,
where all neighbors are connected, this procedure be-
comes very inefficient, because the last nodes to be re-
moved become excessively costly. We found it better to

s} (a)

Log,, (8)

N
w
IN
o
]
~N

Log,, (&)

-2 -1 (o] 1 2 3 4 5 6 7

Log,, (s')
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“contain the damage” by removing one column at time
(i.e., the nodes with the same index i). After the first p
columns have been removed, one has a situation where
the p+1 “electrodes” connected to the voltages
0,—1,..., —p are all connected to each other. Further-
more, all possible connections exist from these p+1
“electrodes” to the N nodes of the (p +1)th column, and
all nodes in the (p +1)th column are connected to each
other. A further optimization of the algorithm is ob-
tained by, after removing the first N /2 columns, starting
from the other end of the circuit by removing columns in
decreasing order of the i index.

IV. COMPUTER SIMULATIONS

The algorithm derived in Sec. III was applied to a
study of hopping in two dimensions. At low tempera-
tures large lattices are needed to obtain reasonable statis-
tics. We chose to simulate hopping on a 100X 100 lat-
tice. For this system a standard workstation calculates
the conductivity accurately (at one particular frequency)
in about 1 min. However, even a 100X 100 lattice is not
self-averaging at low temperatures, and it was necessary

. . . L . . .
-2 -1 o 1 2 3 4 5 6 7
Log,, (s”)

—1q SR T 1 " 1 L 1 S
2 -1 o 1 2 3 4 5 6 7
Log,, (s

FIG. 4. Log-log plots of the results of computer simulations in two dimensions (points) compared to the EMA predictions (full
curves) for symmetric hopping on a 100X 100 lattice. The figures show the conductivity as function of the real Laplace frequency
(i.e., at imaginary frequencies). The computer simulations were carried out using the algorithm developed in Sec. III. The points
represent averages over 20 different 100X 100 lattices, where the jump frequency activation energy varies according to the following
distributions (compare Appendix B of Ref. 20): (a) asymmetric Gaussian; (b) Cauchy; (c) power law with exponent —4; and (d) box.
Each figure shows the following dimensionless inverse temperatures: =5 (), =10 (0), =20 (V), and =40 (). The “re-
duced” Laplace frequency s’ as well as & are defined in Eq. (42). The EMA predictions were found by solving Eq. (18) where sG is

given by Eq. (23).
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to average over several simulations to obtain reproducible
results.

In each simulation a 100X 100 lattice was generated
by, for each link, choosing a random activation energy
according to the probability distribution under study.
Four different probability distributions were used: The
asymmetric Gaussian, the Cauchy, the power law with
exponent —4, and the box. The details of how the ener-
gies were generated are described in Appendix B of Ref.
20; to avoid spurious correlations the random numbers
were generated according to the RANO algorithm of
Ref. 51.

For each lattice the frequency-dependent conductivity
was evaluated from Eq. (40) at a number of frequencies,
where the admittance matrix Y[i,j;s] results from the
reduction of the ACMA circuit. For simplicity, the
simulations were carried out at real Laplace frequencies,
corresponding to purely imaginary frequencies. This
trick simplifies the computations and, since o(s) is real
for real s, makes it possible to present the frequency-
dependent conductivity in one single curve.

Figure 4 shows a log-log plot of the averages of 20
simulations for the four activation energy distributions at
the dimensionless inverse temperatures f=35, 10, 20, and
40. If p(E) is the normalized energy probability distribu-
tion and one introduces (compare Sec. V)

= B
= ) (41)
B 8mp(E,)
the quantities s’ and & in Fig. 4 are defined by
__B ___ o
= , o= . 42
T 7T 50 “2)

In Fig. 4 the full curves are the EMA predictions found
by solving Eq. (18) numerically. In two dimensions the
quantity sG is given by Eq. (23). A numerical approxima-
tion to the elliptic function was used.® Equation (18) was
discretized into 10.000 terms and then solved by the
bisection method.>!

The EMA is usually derived from a perturbation ex-
pansion around the homogeneous state. As such, there is
no a priori reason to believe in the EMA predictions in
severely disordered cases like low-temperature hopping,
which is really quite extreme: It involves jump frequen-
cies that for B=40 vary 20-60 decades. This enormous
variation implies that the scaling of the frequency intro-
duced in Eq. (42) shifts the frequency by in some cases
more than 15 decades. In this light it must be said that
the EMA works rather well in Fig. 4.

V. THE LOW-TEMPERATURE LIMIT OF THE EMA:
THE APPEARANCE OF UNIVERSALITY

This section studies the EMA prediction for the 7—0
limit of the frequency-dependent conductivity in sym-
metric hopping models in more than one dimension. The
derivation starts by noting that, as 8— oo,

x=s5/0<<1 (43)

for all frequencies in an increasingly large range around
the frequency marking the onset of ac conduction. This
observation was first made by Bryksin in a paper from
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1980 (Ref. 26) dealing with electrons tunneling between
random positions. In the derivation given below, Eq. (43)
will be assumed first and subsequently shown to be con-
sistent with the result derived.

Equation (18) is rewritten

o=< [0 ~> . (44)
F—o+Do/(1—sG)/r

When x is small, sG is small. Expanding to first order in
sG leads to (where the numerator is rewritten for con-
venience below)

0=< T'+[(D—1)+DsGlo—D(1+sG)o >
C+[(D—1)+DsG o r
If we introduce the notation T'(E)=Tge ~#F to emphasize
the activation energy dependence of the jump frequency
and if the average is converted into an average over the
activation energy probability distribution, Eq. (45) be-
comes
el : )
D(1+sG)oe \T(E)+[(D—1)+DsGlo [
For large B the jump frequency I'(E) varies extremely

rapidly and, for given o and s, there are essentially just
two extreme possibilities: Either one has

INE)<<[(D—1)+DsG lo

(45)

(46)

or the opposite extreme. In the former case I'(E) may be
ignored altogether from the denominator in Eq. (46),
while in the latter case the denominator becomes very
large and there is little contribution to the right-hand
side. The energy separating the two cases, E,(s), is given
as the solution of

[(E)=[(D—1)+DsG o ;

thus

Eg(s)=—-_[3—lln

Accordingly, the right-hand side of Eq. (46) becomes

[[(D—1)+DsG]a )

Lo

1
<r(E)+[(D—1)+DsG]a >E
1

- [(D—1)+DsG o ng(”p(E)dE 48

and Eq. (46) reduces to
D—1 4 sG _r=
D D(1+sG) “E

Evaluating Eq. (49) at s=0 gives an expression for
(D—1)/D. When this expression is subtracted from Eq.
(49), one gets

SG _ Eg(O)
m— Eg(s)p(E)dE . (50)

)p(E )E . (49)

For large B, E,(0) is close to E,(s) and therefore the in-
tegral on the right-hand side can easily be evaluated. If
P[E,(0)] is denoted by p,, the integral is simply



49 STUDIES OF ac HOPPING CONDUCTION AT LOW TEMPERATURES

PolEg(0)—E,(s)]. Introducing the symbol &@=o0/c(0)
into Eq. (50) and using Eq. (47) one gets

& _Po

D(1+sG) B

In . (51)

D
D—1
To leading order in the small quantity sG, Eq. (51)
reduces to

isé=1n[av] . (52)
Dp,
Since for D=1 one has E,(0)=, the derivation as-
sumes D >1. As B— «, E, (0) approaches the dc con-
ductivity activation energy which is equal to the percola-
tion energy defined by Eq. (17); thus

Po=p(E,) . (53)

In further development one has to distinguish between
the cases D =2 and D > 2. In the latter case, which is the
simplest, the quantity sG as a function of x =s/o con-
tains a regular first-order term. Writing

D>2: sG=apx (x—0), (54)
Eq. (19) implies

d’k 1
1-8z (277)? D —(cosk+ - -+ +coskp)

ap=+ (55)
For D=3 one has a@;=0.253.” Substituting the expan-
sion Eq. (54) into Eq. (52) leads to Eq. (1), & In(&)=75,
where

Bap

D>2: s =———s .

(56)

Finally, the consistency of the derivation is checked: The
assumption Eq. (43) is indeed satisfied, since for S— o
one has x =s /o <5 /(&B)—0 for fixed & and 3.

Turning now to the two-dimensional case [where the
integral in Eq. (55) diverges] we use the asymptotic ex-
pansion of the complete elliptic integral of the first
kind:® For k—1 one has K(k)=In(4/k’') where
k*+k'*=1. This implies that

K(k)=;21—ln(1—k)

for k —1. Thus,

4
4+x

=:2~11n(x)

for x —0. When this is substituted into Eq. (23) one finds
asymptotically

sG,_ D=:—ﬂ_1x In(x) (x—0). (57

In terms of the B defined in Eq. (41), Eq. (52) thus be-
comes

In()=B>In | < (58)
g
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Defining now

p=2. y=Emb (59)

Eq. (58) becomes

lnw):ﬁém:([i) (In(7)—1In(3)+1n(3) +1n[In(B)]} .

(60)

For fixed & and § as f— o, Eq. (60) reduces to Eq. (1),
& In(¢)=3. Note that the assumption x =s/0 <<1 is
also satisfied for D=2 for fixed & and § when B is
sufficiently large.

The numerical solution of Eq. (1) was discussed in Ap-
pendix A in Ref. 20 where an analytical approximation to
the function &(3) was also given.

Figure 5 tests the EMA universality prediction against
computer simulations. The four different activation ener-
gy distributions of Fig. 4 were used, supplemented by re-
sults for the exponential distribution.”® For each distribu-
tion the temperature was chosen so that S=4. Each
point in the figure represents the average of 50 simula-
tions of a 100X 100 lattice. The figure clearly shows that
there is universality at low temperatures, but there is not
a quantitative agreement with the EMA universality pre-
diction. A further discussion of this result is given in the
next section.

VI. DISCUSSION

In this paper a method for the numerical solution of
symmetric hopping models has been derived. The
method, which makes use of the ac Miller Abrahams

6

Log,, (8)

Log,, (8)

FIG. 5. Log-lot plot comparing the EMA universality pre-
diction [full curve; Eq. (1)] to computer simulations (points) of a
100X 100 lattice for five different activation energy probability
distributions. Each point represents the average of 50 simula-
tions taken at the “reduced” inverse dimensionless temperature
B=4 where B is defined in Eq. (41); this corresponds to (the
relevant E_’s are given in Appendix B of Ref. 20) $=63.91 for
the asymmetric Gaussian, $=32.00 for the Cauchy, f=50.27
for the exponential, 8=119.66 for the power law with exponent
—4, and B=100.53 for the box distribution. The “reduced” La-
place frequency ¥ is defined in Eq. (59) and 6=0/0(0). The
figure shows results for the following distributions: asymmetric
Gaussian (A ); Cauchy (0); exponential (O); power law with
exponent —4 (A ); and box (V).
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electrical equivalent circuit, may be generalized immedi-
ately to deal with nonsymmetric hopping models; the
only change is that in the ACMA circuit the capacitors
then vary from site to site.!*>* The method allows a fas-
ter and more accurate calculation of o(s) in hopping
models for larger lattices and at lower temperatures than
previous methods. Thus, the standard Monte Carlo type
method is useless if one wants to study low temperatures
as in Fig. 4. The standard relaxation methods for solving
linear equations are also too slow in this regime where
the coefficients vary many orders of magnitude.

There exists a clever algorithm for solving linear equa-
tions with coefficients that vary many orders of magni-
tude. This is the algebraic multigrid algorithm
(AMG)®"62 which is available from the Yale multigrid li-
brary in a well-documented and carefully debugged
FORTRAN version.®> The AMG is an algebraic generali-
zation of the multigrid method for solving elliptic partial
differential equations. The AMG has been tested success-
fully for large random admittance networks with admit-
tances varying many orders of magnitude.?®® It solves
the Kirchhoff equations in a time proportional to the
number of equations. For the present problem, the AMG
solves the problem in D dimensions in a time = N?. At
first sight, this is much better than the method presented
in Sec. III, which, as is easy to show for D > 1, calculates
the conductivity in a time «<N3”72 However, in the
practical use of the AMG it is not presently superior to
the method of Sec. III. Thus, when applied to a hopping
problem at low temperatures, the AMG easily runs into
overflow problems, whereas the method of Sec. III avoids
such problems. At low temperatures, if one wants to cal-
culate the conductivity by solving Eq. (26) or the higher-
dimensional analogs, the solution must be extremely ac-
curate. The standard double precision real number repre-
sentation is not enough, since the equations should be
solved with an accuracy of 50-100 digits (depending on
how low the temperature is). Unfortunately, higher pre-
cisions are not hardware implemented today and are
therefore quite slow. The method presented in Sec. III
seems to be the best available at present. On a longer
time span it is likely that the AMG will eventually be-
come the best choice.

The results of extensive computer simulations of a
100X 100 lattice in 2D was reported in Sec. IV. In order
to obtain reproducible results at low temperatures, it was
necessary to average over several simulations of different
lattices generated for the same activation energy proba-
bility distribution. The main problem in the reproduci-
bility lies at low frequencies; thus, at frequencies where
log,o(@)>1 the results (i.e., & as function of s’) are gen-
erally quite reproducible.

The results of the computer simulations were com-
pared to the predictions of the EMA at real Laplace fre-
quencies at a number of temperatures in Fig. 4. The use
of real Laplace frequencies not only simplifies the calcula-
tions, but also makes it possible to represent the results in
one curve (instead of two, one for the real part and one
for the imaginary part of the conductivity). This curve
contains all information about the frequency dependence
of the conductivity. This is because the function o(s) is
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analytic in the upper half s plane so, by analytic continua-
tion, the behavior on the real s axis determines the func-
tion uniquely. A further virtue of this representation is
that deviations from the EMA are somewhat magnified
here compared to the use of real frequencies. The ‘“re-
duced” frequency used in Fig. 4 is not the § of Eq. (59)
simply because, for some of the highest temperatures
studied, 3 becomes less than one, so that Eq. (59) does not
make sense. Instead, the related “reduced” frequency
s'=pBs /a(0) [Eq. (42)] was used in Fig. 4.

As far as is known to the author, these results are the
first simulations of a hopping model at low temperatures
where the jump frequencies I vary over several decades
(here up to about 50—60 decades). In general, there is a
rather good agreement between the simulations and the
EMA, with some deviations in the transition region
where the EMA at low temperatures consistently un-
derestimates the conductivity.

At low temperatures the EMA predicts a universal fre-
quency dependence of the conductivity, independent of
the activation energy probability distribution (Sec. V). A
particular case of the equation governing the universal
conductivity, Eq. (1) was derived by Bryksin in 1980 (Ref.
26) for a system of tunneling electrons. The equation was
later derived by Fishchuk?* for the box distribution of ac-
tivation energies in the macroscopic model, and by the
present author for a hopping model with the box distribu-
tion.3° Recently, it was shown by means of the EMA for
random admittance networks that Eq. (1) is universal in
the low-temperature limit of the macroscopic model.'*?°
In Sec. V it was shown that the equation is also the
universal EMA prediction for symmetric hopping mod-
els. Physically what happens is that, at low temperatures,
the conduction mainly follows the percolation paths, and
the only “signature” of the activation energy distribution
left is the number p(E, ).

The universality prediction was tested in Fig. 5, which
studies five different activation energy probability distri-
butions at the same “reduced” temperature f=4. There
is clearly a universality in the sense that the function &(3)
is independent of the activation energy distribution.
However, the results deviate from the EMA prediction
Eq. (1). One reason for the discrepancy may be that the
temperature is simply not low enough in Fig. 5. Unfor-
tunately, it is not possible to go to lower temperatures for
a 100X 100 lattice without loosing reproducibility.

There are interesting differences between the macro-
scopic model?® and hopping models. Figures 4 and 5 in-
dicate a systematic deviation of the simulations from the
EMA predictions at low temperatures in the transition
region. Here the data give a less sharp transition to fre-
quency dependence than the EMA predicts. In the mac-
roscopic model, on the other hand, there is a very good
agreement between the EMA predictions and the simula-
tions at all temperatures and frequencies. It is not clear
what the origin of these differences is. Apparently, the
hopping model is more complex than the macroscopic
model. Thus, in the derivation of universality for hop-
ping models, one has to distinguish between the cases
D =2 and D > 2, which is not necessary for the derivation
of Eq. (1) for the macroscopic model.?
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In the simplest realistic approximation to hopping
models, the continuous time random walk (CTRW) ap-
proximation,*® the conductivity for the box distribution

of energy barriers® is

_ 5
In(1+3)

As has been shown elsewhere,° this expression is close to
that given by Eq. (1); in particular, the two functions &(3)
have the same asymptotic expressions for the exponents
of the real and imaginary parts of the conductivity.
These exponents converge slowly to one as the frequency
goes to infinity.?’ (A convincing experimental demonstra-
tion of this phenomenon has recently been given for
metal-cluster compounds.®)

There has been relatively little discussion of universali-
ty for ac conduction in the literature.!”>® In experi-
ments, a number of authors pointed out early that quite
different systems like ionic conductive glasses and amor-
phous semiconductors have surprisingly similar ac
responses.! 3 In a theoretical paper, Summerfield® in
1985 termed the phrase “‘quasi-universality” for the fact
that a number of different models, when solved in the
EPA,* give almost the same frequency dependence of the
conductivity.

The macroscopic model based on Maxwell’s equations
for an inhomogeneous solid leads to an electrical
equivalent circuit, where the nodes on a cubic lattice are
joined by a capacitor and a resistor in parallel.?%?* The
resistors carry the free charge currents while the capaci-
tor currents are Maxwell’s displacement currents.”’ In
contrast to the circuit of Fig. 2, there are no connections
to the ground and no voltage generators; the “solid” is
simply subjected to a macroscopic potential drop at the
electrodes (equal to two opposing end faces). In the dc
limit the macroscopic model and hopping models both
give simple resistance circuits. Thus, the dc limit of the
EMA hopping equation, Eq. (21), is identical to the EMA
equation for a random resistance circuit.

An interesting connection between the symmetric hop-
ping model and the macroscopic model is that the
CTRW approximation’®3 to hopping models corre-

(61)

o=
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sponds to the one-dimensional version of the macroscopic
model. As has been discussed in detail elsewhere,? this
version becomes realistic at low temperatures where con-
duction mainly follows the percolation paths. Along
these lines, an approximation to the macroscopic model
referred to as the ‘“percolation path approximation”
(PPA) was proposed in Ref. 20, leading to Eq. (61).

Throughout this paper the limit of extreme disorder
(where the jump frequencies I" vary several decades) was
arrived at by going to low temperatures for a system with
thermally activated hopping. The same limit is also ar-
rived at in a system of localized electrons tunneling be-
tween nearest-neighbor sites, when the density of elec-
trons becomes very small. The system of tunneling elec-
trons has been studied extensively in the past.?®3%66
Though it was not spelled out in detail in Sec. V, in the
extreme disorder limit, the EMA universality prediction
[Eq. (1)] applies to this system as well.?

There are a number of open problems and work that
remains to be done. The symmetric hopping model
should be studied numerically at low temperatures also in
three dimensions. Regarding the numerical method, it is
not clear what the optimal strategy for removing nodes
is. From the theoretical point of view the main question
is: Is there true universality in the extreme disorder lim-
it, or is there only “quasi-universality?” If true universal-
ity does exist, as believed by the author, is the universal
function &(5) the same in all dimensions? If this is not
the case, analytical methods more accurate than the
EMA should be developed to calculate the universal con-
ductivity. A further question is: What is the cause of the
difference between the hopping model and the macro-
scopic model, where the EMA works better than for hop-

ping?
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