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Abstract
This paper studies size-polydisperse Lennard–Jones systems described by active
Ornstein–Uhlenbeck particle (AOUP) dynamics. The focus is on the existence of isomorphs
(curves of invariant structure and dynamics) in the model’s three-dimensional phase diagram.
Isomorphs are traced out from a single steady-state configuration by means of the
configurational-temperature method. Good isomorph invariance of the reduced-unit radial
distribution function and the mean-square displacement as a function of time is demonstrated
for three uniform-distribution polydispersities, 12%, 23%, and 29%. Comparing to active-matter
isomorphs generated by the analytical direct-isomorph-check method, the latter have poorer
invariance of the structure, but better invariance of the dynamics. We conclude that both
methods can be used to quickly get an overview of the phase diagram of polydisperse AOUP
models involving a potential-energy function obeying the hidden-scale-invariance property
required for isomorph theory to apply.
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1. Introduction

Active matter involves particles that absorb energy from
their environment and continuously performmotion dissipated
into heat. This kind of motion, which in contrast to stand-
ard Newtonian or Brownian dynamics breaks time-reversal
invariance [1, 2], is relevant not only for describing biological
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systems ranging from bacteria to flocking birds [3–10], but
also for artificial microswimmers and active Janus particles.

Many different approaches to the description of active mat-
ter exist, depending onwhether point particles or particles with
directional coordinates are considered and depending on the
precise mechanism by which the particles autonomously per-
formmechanical work [5, 6, 8, 9, 11, 12]. Point-particle active-
matter models include the active Brownian particle (ABP) [13,
14] and active Ornstein–Uhlenbeck particle (AOUP) models;
these have been used to describe the motion, e.g. in active
colloids [15]. The AOUP model, which is simpler than the
ABPmodel and has one less parameter, can be used to approx-
imate ABP dynamics.Moreover, the AOUPmodel offers more
possibilities to obtain theoretical predictions [16, 17]; this is
themodel we choose to study in the present paper. Specifically,
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the AOUP model involves point particles subject to a colored-
noise Langevin dynamics [16, 18–20].

In view of the variability of biological and other active
systems, it is not always realistic to assume all particles are
identical. As a consequence, polydispersity has recently come
into focus [21–24]. There is also currently a great deal of
interest in passive polydisperse systems coming from, in par-
ticular, their use in SWAP-equilibrated supercooled liquids
[25], in which context the question arises of how similar the
dynamics of small and large particles are [26–28]. Finally,
it is worth mentioning that active matter at high density has
recently been studied inspired by biological materials such as
cells, both for monodisperse [24, 29] and polydisperse cases
[30], showing emerging collective phenomena with the spon-
taneous occurrence of spatial velocity correlations.

This paper studies the size-polydisperse AOUP Lennard–
Jones (LJ) model. We recently demonstrated the existence of
lines of approximately invariant structure and dynamics in
the phase diagram of a binary LJ AOUP model; such lines
are referred to as ‘active-matter isomorphs’ [31–33]. Inspired
by the fact that the introduction of polydispersity into ordin-
ary (passive) Newtonian models does not affect the exist-
ence of isomorphs [34], the present paper investigates whether
the existence of isomorphs also survives the introduction of
polydispersity into the AOUP model. This is important to
investigate since the existence of isomorphs makes it pos-
sible to quickly establish an overview of the phase diagram
because only a single point on each isomorph needs to be
simulated.

2. The AOUP equation of motion and simulation
details

We consider a system of N particles in volume V and define
the (number) density by ρ≡ N/V. If the potential-energy func-
tion is denoted by U(R) in which R≡ (r1, . . .,rN) is the vec-
tor of all particle coordinates, the AOUP equation of motion
[16, 18–20] is

Ṙ = −µ∇U(R) + η(t) . (1)

Here µ is the mobility (velocity over force) and the noise vec-
tor η(t) is colored according to an Ornstein–Uhlenbeck pro-
cess, i.e. is a Gaussian stochastic process characterized by

⟨ηαi (t)η
β
j (t

′)⟩ = δijδαβ
D
τ
e−|t−t ′|/τ (2)

in which i and j are particle indices, α and β are xyz spatial
indices, andD and τ are constants of dimension length squared
over time and time, respectively.

We are interested in how the physics is affected when
the density is changed, specifically in determining whether
approximately invariant physics can be obtained by adjusting
D and τ properly with density (µ is regarded as a material con-
stant throughout). For the binary AOUP model this problem

Table 1. Values of the polydispersity δ, σ range, and ratio between
largest and smallest particle sizes for the three cases of uniform
polydispersity studied.

δ σ range σmax/σmin

12% 0.80−1.20 1.50
23% 0.60−1.40 2.33
29% 0.50−1.50 3.00

was studied in [32] that demonstrated how to change D and τ
with density in order to achieve invariant structure and dynam-
ics to a good approximation. The question is whether this is
possible also for systems with a large uniform size polydis-
persity.

In the AOUP model ‘reduced’ quantities are defined
by using l0 = ρ−1/3 as the length unit and t0 = τ as the
time unit [32]. Reduced quantities are marked by a tilde.
When we below speak about approximately invariant struc-
ture and dynamics, this particular state-point-dependent unit
system is referred to.

We studied a system of N= 5000 particles in three dimen-
sions interacting by LJ pair potentials, which between particles
i and j are given by vij(r) = 4ε

[
(r/σij)−12 − (r/σij)−6

]
with

σij = (σi+σj)/2 (Lorentz–Berthelot mixing rule) and ε= 1.0.
The particles sizes σi are distributed according to a uniform
distribution with unity average. As usual, the polydispersity
δ is defined by δ2 = (⟨σ2⟩− ⟨σ⟩2)/⟨σ⟩2, which reduces to
δ2 = ⟨σ2⟩− 1. For the uniform distribution δ cannot exceed
1/
√
3∼= 58%. The three polydispersities studied below are

δ ∼= 11.5%, 23.1%, and 28.9%, corresponding to the size
ranges listed in table 1 (these are for brevity henceforth repor-
ted as δ = 12%, 23%, and 29%). Note that the study thereby
entails substantially different particle sizes, with the ratio of
largest to smallest particle volume equal to 27 in the 29% poly-
dispersity case.

All simulations used a shifted-force cutoff [35] of the ij
particle interaction at the pair distance r= 2.5σi j and the time
step ∆t=∆t̃/(D ρ2/3) in which ∆t̃= 0.4 [32]. The active-
matter simulations were carried out on GPU cards using a
home-made code, the MD simulations used RUMD [36].

3. Structure and dynamics along an isochore

Before discussing results for the variation of structure and
dynamics along active-matter isomorphs, we briefly present
analogous results along an isochore, i.e. for state points of
same density. This sets the stage by illustrating that structure
and dynamics do vary significantly throughout the (ρ,D, τ)
AOUP phase diagram. Structure is studied by means of the
average radial distribution function (RDF) denoted by g(r). In
figure 1(a) RDFs are shown along the ρ= 0.85 isochore for the
δ= 29% case (with values of D and τ taken from the δ= 29%
DIC active-matter isomorph studied below). Figure 1(b) shows
the same data in reduced coordinates, which in this case simply
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Figure 1. Average RDF and MSD for state points on the ρ= 0.85 isochore of the δ = 29% polydispersity LJ AOUP model (the D and τ
values are those of the below studied δ = 29% active-matter DIC isomorph). (a) and (b) show the RDF as a function of the pair distance r
and of the reduced pair distance r̃, respectively (the curves are the same because r̃∝ r along an isochore). We see a substantial variation in
the structure, with the most pronounced structure found for the smallest values D (black curve). The MSD likewise shows no collapse along
the isochore, whether plotted (c) as a function of the time t or (d) as a function of the reduced time t̃. The slowest motion is found for the
smallest D (black curve).

involves a common scaling of the x-coordinate. The paramet-
ers used in the simulations are listed in insets of the figures
(more decimals of these parameters are provided in tables S1–
S7 in the appendix).

We find a substantial structure variation along the isochore.
The same applies for the mean-square displacement (MSD) as
a function of the time t, ⟨∆r2(t)⟩, which is plotted in a log-log
plot in (c) LJ units and (d) reduced units. The short-time slope
is two, reflecting the ‘ballistic’ regime of the AOUP model,
which is absent in ordinary Langevin dynamics [16, 18–20]
because it results from short-time noise correlations resulting
in an inertia-like persistence of the direction ofmotion. At long
times the well-known diffusive behavior leading to unity slope
is observed. We note that the dynamics varies significantly
along the isochore, whether or not given in reduced
units.

4. Structure and dynamics along Tconf-generated
active-matter isomorphs

Saw et al [32] used the configurational temperature Tconf for
determining how to change the AOUP model parameters D
and τ with density in order to achieve (approximately) invari-
ant reduced structure and dynamics. The assumption is that
kBTconf is the relevant characteristic energy scale where Tconf

is defined by kBTconf ≡ ⟨(∇U)2⟩/⟨∇2U⟩ [37–39] in which kB
is the Boltzmann constant, ∇ is the gradient operator in the
3N-dimensional configuration space, and the sharp brackets
denote standard canonical-ensemble averages. In the thermo-
dynamic limit the relative fluctuations of both the numerator
and the denominator of Tconf go to zero. This implies that it is
enough to consider a single configurationR0 using the expres-
sion kBTconf

∼= (∇U(R0))
2/∇2U(R0).
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The reasoning of [32] may be summarized as follows.
Adopting e0 = kBTconf as the energy unit supplementing the
above introduced length and time units (l0 = ρ−1/3; t0 = τ ),
one first notes that the three quantities µt0e0/l20, Dt0/l

2
0, and

τ/t0 are dimensionless. Assuming that these quantities can-
not change with varying density if the structure and dynam-
ics are invariant in reduced units, we conclude that µ∝
l20/(t0e0) = ρ−2/3/(τkBTconf) and D∝ l20/t0 = ρ−2/3/τ . Since
µ is assumed to be a material constant, this leads to τ ∝
ρ−2/3/kBTconf and D∝ kBTconf, i.e. to the following recipe for
how D and τ changes with density from their values D0 and
τ 0 at a reference state point of density ρ0:

D(ρ) = D0
Tconf(ρ)

Tconf(ρ0)
,

τ(ρ) = τ0

(
ρ0

ρ

)2/3 Tconf(ρ0)

Tconf(ρ)
. (3)

For a large system Tconf(ρ0) may as mentioned be evalu-
ated from a single (steady-state) configuration, Tconf(ρ0)∼=
Tconf(R0). Saw et al [32] demonstrated that this approxima-
tion introduces a negligible error for typical system sizes. In
order to find Tconf(ρ) one scalesR0 uniformly to the density ρ,
i.e. substitutes R= (ρ0/ρ)

1/3R0 into the configurational tem-
perature expression. This leads to

D(ρ) = D0
Tconf

[
(ρ0/ρ)

1/3R0
]

Tconf(R0)
,

τ(ρ) = τ0

(
ρ0

ρ

)2/3 Tconf(R0)

Tconf
(
(ρ0/ρ)1/3R0

) . (4)

We used these equations for generating three active-matter
isomorphs, starting in each case from the parameter values
D= 1100 and τ = 10 at the reference densities ρ0 =0.99, 0.91,
and 0.85, respectively, for the polydispersities δ = 12%, 23%,
and 29% (the reference densities were chosen to have the same
virial, i.e. give the same contributions to the pressure coming
from the interactions).

Results for the variation of the RDF are given in figure 2.
The left column reports the RDF for the three polydispersit-
ies as functions of the pair distance r, the right column shows
the same data as functions of the reduced pair distance r̃. In
the latter case we find a good, though not perfect, data col-
lapse and conclude that the average structure is approxim-
ately invariant along the active-matter isomorphs. In view of
the fact that the density varies by a factor of two, this is not
trivial.

Figure 3 shows analogous data for the MSD plotted in the
same way with the left column giving the MSD as a function
of time and the right column giving the same data in reduced
units. There is a good data collapse with, however, a somewhat
faster motion at the higher densities.

5. Comparing to direct-isomorph-check generated
isomorphs

Above we demonstrated good invariance of the structure and
dynamics along active-matter isomorphs generated by the
Tconf method [32]. That method is easy to use and efficient
because it requires just a single steady-state configuration at
the reference state point to trace out the corresponding active-
matter isomorph in the relevant phase diagram, in casu the
(ρ,D, τ) diagram of the AOUP model. An alternative method
for tracing out active-matter isomorphs is the analytical ‘direct
isomorph-check’ (DIC) method, which in the appendix of [32]
was shown to result in somewhat better isomorph-invariance
of the dynamics of the AOUPKob–Andersen binary LJmodel.

Consider first a standard passive Newtonian systems
involving LJ pair interactions of any kind, i.e. single-
component, binary, or polydisperse systems, defined by some
mixing rule. For such a system the analytical DIC recipe for
tracing out a standard (passive) equilibrium isomorph [40, 41]
is

h(ρ)
T

= Const. (5)

Here h(ρ) is the following function of density [40, 41]

h(ρ) =
(γ0

2
− 1

)( ρ

ρ0

)4

−
(γ0

2
− 2

)( ρ

ρ0

)2

(6)

in which ρ0 is the reference-state-point density and γ0 is the
density-scaling exponent at the reference state point. This
exponent can be determined numerically by means of

γ0 =
⟨∆U∆W⟩
⟨(∆U)2⟩

. (7)

in which∆W and∆U are the deviations from the equilibrium
values of virial and potential energy, respectively, and the
angular brackets denote standard NVT equilibrium averages
[31, 42].

For any system (passive or active, equilibrium or non-
equilibrium) the systemic temperature Ts(R) is defined as
the temperature of the corresponding thermal-equilibrium
Newtonian system at the state point with the density of the
configuration R and average potential energy equal to U(R)
[43]. In the thermodynamic limit fluctuations in Ts(R) go to
zero, implying that one has at any time a well-defined sys-
temic temperature Ts. For, e.g. a driven passive or an active-
matter system, a ‘systemic isomorph’ is defined as a curve in
the (ρ,Ts) phase diagram identical to an isomorph in the stand-
ard equilibrium Newtonian (ρ,T) phase diagram [43]. Thus in
the analytical DIC, the systemic-temperature’s variation with
density is given by

h(ρ)
Ts(ρ)

= Const. , (8)

i.e. Ts(ρ)∝ h(ρ). The analytical DIC method for generating
an active-matter isomorph of the AOUP model is arrived at
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Figure 2. Structure probed along Tconf-generated active-matter isomorphs. (a), (c), and (e) show the (average) RDFs for polydispersity
δ = 12%, 23%, and 29%, respectively, while (b), (d), and (f) show the same data as functions of the reduced pair distance r̃. In all three
cases we see a good collapse of the reduced RDF along the active-matter isomorph.

by replacing the configurational temperature in equation (3)
by the systemic temperature Ts (this procedure was justified in
[32]). Via equation (8) this leads to

D(ρ) = D0
h(ρ)
h(ρ0)

,

τ(ρ) = τ0

(
ρ0

ρ

)2/3 h(ρ0)

h(ρ)
. (9)

Table 2 reports the systemic temperatures at the reference
state points of the three polydispersities studied. As men-
tioned, the reference densities were chosen to have the same
virial; we see that they also have almost the same systemic
temperature.

Figure 4 shows the active-matter isomorph obtained from
the Tconf method (full curves) and the analytical DIC method
(dashed curves), starting at the reference state point (ρ,D, τ) =
(ρ0,1100,10) in which the reference density is 0.99, 0.91, and
0.85, respectively, for δ = 12%, 23%, and 29%. The twometh-
ods for generating isomorphs result in visibly different curves;
thus there is more than 50% difference inD and τ at the largest
density in the 29% polydispersity case (green curves). How
different are these active-matter isomorphs when it comes to
average RDF andMSD data collapse? The RDF case is invest-
igated in figure 5, which shows that the structure is some-
what more invariant along the Tconf-generated active-matter
isomorphs than along the DIC-generated isomorphs, albeit this
is a minor effect because in both cases the structure is quite
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Figure 3. Dynamics probed along Tconf-generated active-matter isomorphs. (a), (c), and (e) show the MSDs for polydispersity δ = 12%,
23%, and 29%, respectively, as functions of time, while (b), (d), and (f) show the same data in reduced units. There is a good, but not
perfect, collapse of the reduced MSD along the active-matter isomorphs.

Table 2. Systemic temperature Ts and average potential energy ⟨U⟩ at the reference densities ρ0 of the three polydisperse systems studied.
In all three cases the values of the AOUP parameters at the reference densities are D= 1100 and τ = 10.

ρ0 δ Ts ⟨U⟩

0.990 12% 0.96 −4.455
0.905 23% 0.98 −4.447
0.850 29% 1.00 −4.321

invariant. The differences are most pronounced at higher poly-
dispersity.

Figure 6 reports results for the MSD. Here we reach the
opposite conclusion: the DIC method results in a somewhat
better data collapse than the Tconf method. The same conclu-
sion was reached for the binary Kob–Andersen AOUP model
in [32] (that did not investigate the average RDF).

6. Role of smallest and largest particles

To illuminate why the structure is not always isomorph invari-
ant, we studied for the 29% polydispersity simulation data
the structure and dynamics of the 20% smallest and largest
particles along the DIC isomorph (figure 7). The RDF is here
defined by limiting the central particle to be either among the
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Figure 4. Active-matter isomorphs for the polydispersities δ = 12%, 23%, and 29%, generated from the reference state points by two
different methods, the Tconf method of section 4 (full curves) and the analytical DIC method (dashed curves). The isomorphs are visibly
different.

Figure 5. Comparing the degree of structural invariance along Tconf-generated and DIC-generated active-matter isomorphs. (a), (c), and
(e) show the reduced average RDFs for polydispersity δ = 12%, 23%, and 29%, along the Tconf-generated isomorphs, while (b), (d), and
(f) show the corresponding reduced average RDFs along the DIC-generated isomorphs. There is a slightly better data collapse along the
Tconf-generated isomorphs.
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Figure 6. Comparing the degree of invariance of the dynamics along the Tconf-generated and DIC-generated active-matter isomorphs.
(a), (c), and (e) show the reduced MSDs for polydispersity δ = 12%, 23%, and 29%, along the Tconf-generated isomorphs, while (b), (d), and
(f) show the corresponding reduced MSDs along the DIC-generated isomorphs. There is a better data collapse along the DIC-generated
isomorphs.

smallest or among the largest 20% and counting only neigh-
boring particles of the same kind. In both cases, the peaks are
narrower and higher than that of the average RDF (figure 5(f)),
which reflects the limitation to similar-sized particles. We note
that unlike in figure 5(f), in figure 7(a) the most pronounced
structure is seen at the lowest density. Interestingly, the struc-
ture around the smallest particles is not DIC-isomorph invari-
ant, while that around the largest particles is; a similar res-

ult applies for the Tconf-generated isomorph (data not shown).
In contrast to the findings for structure, the dynamics of both
small and large particles is DIC-isomorph invariant to a good
approximation, even though the small particlesmove consider-
ably faster than the large. We conclude that the lack of perfect
isomorph invariance of the overall RDF largely reflects the fact
that the structure around the smallest particles is not isomorph
invariant.
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Figure 7. Comparing the degree of invariance of the structure and dynamics of the 20% smallest and largest particles, along the
DIC-generated active-matter isomorphs for the δ = 29% polydispersity case. (a) and (b) show the reduced RDFs. The invariance of the
largest 20% particle RDF is much better than the small-particle RDF. For the MSD, however, both cases are isomorph invariant to a good
approximation although the smaller particles move faster than the larger ones.

7. Summary and outlook

Wehave shown that the uniform-distribution size-polydisperse
LJ AOUP model has active-matter isomorphs for the poly-
dispersities δ = 12%, 23%, and 29%. This demonstrates the
robustness of the active-matter-isomorph concept, which for
passive systems applies whenever the potential-energy func-
tion obeys the hidden-scale-invariance condition discussed in
[44, 45]. The existence of isomorphs means that the dimen-
sion of the polydisperse AOUP phase diagram is effect-
ively reduced from three to two, because it implies that
lines exist in the (ρ,D, τ) phase diagram along which the
reduced structure and dynamics are invariant to a good

approximation. From a practical perspective, this fact makes
it easy to quickly get an overview of the AOUP model’s phase
diagram.

Two methods have been studied for generating active-
matter isomorphs, one based on the configurational temperat-
ure and one based on the systemic-temperature concept. We
find that both methods work well despite the fact that they
do not trace out identical active-matter isomorphs (figure 4).
In practice, the latter method will be easier to use in the
case of LJ active matter for which a simple expression
is available for the function h(ρ) where the parameter γ0

may be evaluated from a single passive-matter simulation
(equation (7)).

9
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More work is needed to clarify how polydispersity relates
to the existence of active-matter isomorphs in general. As
regards the AOUP model, it would be interesting to investig-
ate whether the introduction of energy polydispersity affects
the existence of isomorphs. More generally, other models like
the ABP model with a potential-energy function that obeys
hidden scale invariance should be investigated in polydisperse
versions in order to further illuminate the robustness of the
active-matter-isomorph concept.
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Appendix

This appendix provides more decimals than given in the
figures of the parameters ρ, D, and τ used in the simulations.
It follows from equations (4) and (9) that both methods for
tracing out active-matter isomorphs result in Dτρ2/3 =Const.
Within the number of decimals given, this identity applies for
the below reported parameters.

10
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Table S1. Values of D and τ for polydispersity δ = 28.87% along the ρ= 0.85 isochore (figure 1).

ρ D τ

0.8500 1100.0000 10.0000
0.8500 2377.8887 4.1509
0.8500 5377.2401 1.6255
0.8500 10460.7186 0.7540
0.8500 23709.0934 0.2923

Table S2. Values of ρ, D and τ for polydispersity δ = 11.55% along the Tconf isomorph (figures 2 and 3).

ρ D τ

0.9900 1100.0000 10.0000
1.2000 3076.3710 3.1453
1.4000 6577.2502 1.3275
1.7000 16147.1699 0.4751
2.0000 33108.2613 0.2079

Table S3. Values of ρ, D and τ for polydispersity δ = 23.09% along the Tconf isomorph (figures 2 and 3).

ρ D τ

0.9050 1100.0000 10.0000
1.1000 3202.8909 3.0155
1.3000 7484.4043 1.1544
1.5000 14801.2586 0.5306
1.8000 33821.6367 0.2056

Table S4. Values of ρ, D and τ for polydispersity δ = 28.87% along the Tconf isomorph (figures 2 and 3).

ρ D τ

0.8500 1100.0000 10.0000
1.0000 2704.4638 3.6497
1.2000 6991.3804 1.2502
1.4000 14743.5375 0.5350
1.7000 35809.7818 0.1935

Table S5. Values of ρ, D and τ for polydispersity δ = 11.55% along the DIC isomorph (figures 5 and 6).

ρ D τ

0.9900 1100.0000 10.0000
1.2000 2798.8895 3.4571
1.4000 5629.7965 1.5509
1.7000 13101.0610 0.5855
2.0000 26062.3855 0.2641

Table S6. Values of ρ, D and τ for polydispersity δ = 23.09% along the DIC isomorph (figures 5 and 6).

ρ D τ

0.9050 1100.0000 10.0000
1.1000 2802.7296 3.4460
1.3000 5933.8578 1.4561
1.5000 11036.5957 0.7116
1.8000 23877.3029 0.2913
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Table S7. Values of ρ, D and τ for polydispersity δ = 28.87% along the DIC isomorph (figures 5 and 6).

ρ D τ

0.8500 1100.0000 10.0000
1.0000 2377.8887 4.1509
1.2000 5377.2401 1.6255
1.4000 10460.7186 0.7540
1.7000 23709.0934 0.2923
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