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ABSTRACT
We study a united-atom model of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl)sulfonylamide to determine to what
extent there exist curves in the phase diagram along which the microscopic dynamics are invariant when expressed in dimensionless, or
reduced, form. The initial identification of these curves, termed isodynes, is made by noting that contours of reduced shear viscosity and
reduced self-diffusion coefficient coincide to a good approximation. Choosing specifically the contours of reduced viscosity as nominal iso-
dynes, further simulations were carried out for state points on these, and other aspects of dynamics were investigated to study their degree
of invariance. These include the mean-squared displacement, shear-stress autocorrelation function, and various rotational correlation func-
tions. These were invariant to a good approximation, with the main exception being rotations of the anion about its long axis. The dynamical
features that are invariant have in common that they are aspects that would be relevant for a coarse-grained description of the system; specifi-
cally, removing the most microscopic degrees of freedom in principle leads to a simplification of the potential energy landscape, which allows
for the existence of isodynes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0177373

I. INTRODUCTION
The phenomenon of density scaling of dynamics has, in the last

two decades, become an important tool for classifying and under-
standing the behavior of liquids1–3 (although similar approaches
have existed for longer4). Density scaling refers to the fact that
for many liquids, the dependence of many dynamical quantities
on thermodynamic variables can be expressed through a particular
combination of density ρ and temperature T, specifically

X = f (h(ρ)/T), (1)

where X is some dynamical quantity, for example, a relaxation
time, h(ρ) is a function that depends on the material, and f
is a function that is different for different observables. In many
cases, it can be approximated by a power law, h(ρ) = ργ, where
the so-called density-scaling exponent γ is a material constant. The
essence of density scaling can be stated as the dynamical properties
being invariant along certain curves in the phase diagram given by
h(ρ)/T = const. The realization of its significance was prompted by

the rise of high pressure measurements of glass-forming and other
complex liquids. The use of an extra parameter allows for a more
complete picture of what governs dynamical behavior. The term
density scaling usually refers to the finding that the main relax-
ation time, τ, and the viscosity can be represented as a function of
h(ρ)/T.5,6 In addition to these “scalar” quantities, it is also often
found that the spectral shape of the relaxation seen, for example,
in dielectric or neutron spectroscopy, is invariant along the lines of
constant relaxation time.1,7–9 This result is called isochronal super-
position, but it also leads to a generalization of density scaling9 (if
the relaxation time obeys density scaling) because it follows that any
shape parameter of the spectrum will be a function of h(ρ)/T. In
other words, for some liquids, it is found that the lines in the phase
diagram defined by h(ρ)/T = const exhibit identical dynamics as
probed by different observables on all time scales.10,11

A theoretical concept, hidden scale invariance, and a theoret-
ical framework known as isomorph theory have emerged that can
explain density scaling.12–14 In fact, these lead to a stronger claim,
namely that microscopic structure is also invariant on the same
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curves as dynamics; these curves are now designated as isomorphs to
emphasize the invariance of structure. The theory specifies how to
quantify the degree to which dynamical invariance can be expected
and how to identify isomorphs themselves using methods that are
straightforward in computer simulations (at least for the simplest
model systems) but less so in experiments. Systems that have good
isomorphs are understood to include van der Waals liquids and
metals. Typical values of γ for such systems are in the range 4–8
for van der Waals systems (though lower for polymers)15 and 2–6
for metals.16 Those systems in which Coulomb interactions domi-
nate or have strong directional bonds, e.g., in the form of hydrogen
bonds, as in, for example, water, do not have good isomorphs in
simulations.17,18 In experiments, there is some evidence that den-
sity scaling breaks down for hydrogen bonding systems, particularly
when it comes to the spectral shape being invariant over many
decades in time and/or at very high (GPa-range) pressures.10,19,20

This breakdown is expected from isomorph theory, but it has
also been found that some hydrogen bonding systems obey den-
sity scaling,8,11,21 though possibly in a restricted density range and
generally with very low values of γ (around 1).

Ionic liquids are a class of liquids that have received enor-
mous attention in the last two decades, primarily because of their
promise in applications.22 They also represent an important cate-
gory of liquid worthy of study for fundamental reasons: in particular,
with modern room-temperature ionic liquids, the Coulomb interac-
tions are diluted due to the large size of the molecules. Therefore,
it makes sense to consider them as an intermediate case between
van der Waals liquids and strongly ionic liquids such as the classical
molten salts (e.g., NaCl). There is experimental data demonstrat-
ing density scaling for the different transport coefficients (viscosity,
electrical conductivity, and self-diffusion) in many different ionic
liquids.23–33 In addition, recent experimental work34 showed that the
time scale and spectral shape of the main (slow) dynamical process at
microscopic scales, seen in neutron spectroscopy, are also invariant
along the same lines as the conductivity for Pyr14TFSI. Moreover,
these authors also examined the structure factor as measured using
x rays and found that it was partly invariant: the so-called charge
peak reflecting charge ordering varied slightly along isoconductivity
lines, while the main peak at large wavenumbers was quite invariant.
The density changes involved were small, of order 2%. Therefore,
Pyr14TFSI does not have isomorphs since not all of the micro-
scopic structure is invariant, although certain aspects are. If one
subscribes to the notion that dynamics and structure must be related,
in that structure, or some particular aspect of it, governs dynam-
ics, then it is not surprising that at least part of the structure is
invariant along the isoconductivity lines. This reasoning has been
called, in the context of isomorph theory, the isomorph filter,12 and
a generalized version of it applies here: if one should claim that
some aspect of structure should “control” the dynamics, then that
aspect must be invariant along the same curves that dynamics is.
If one does not know which aspect of structure is controlling the
dynamics, one should start by searching among those aspects that
are invariant along those lines. In this work, we include a limited
analysis of structure, and a more detailed discussion can be found
in Ref. 35.

In previous work, we studied by simulation a simple model of
a molten salt36 over a large density range. The wide range allowed
us to effectively vary the strength of the Coulomb interactions; at

high densities, they become less relevant compared to the other
interactions due to the relatively slow rise of the Coulomb poten-
tial at short distances. In that work, dynamics and structure were
studied along curves of constant excess entropy, which according to
isomorph theory, are isomorphs, assuming these exist.12,37 Curves of
constant excess entropy—which always exist—are referred to as con-
figurational adiabats. A remarkable contrast was revealed between
dynamic invariance along configurational adiabats on the one hand
and substantial variation of structure on the other hand. When
restricting to moderate density changes and considering the struc-
ture factor, a similar picture to that reported by Hansen et al. was
found, namely a near invariance of the main peak together with
a variation in the charge peak. However, the larger picture can
be expressed as the contrast between near-invariant dynamics and
non-invariant structure. This contrast was striking enough to jus-
tify coining new terminology: we designated curves along which
dynamics are invariant as isodynes. Clearly, by this definition, iso-
morphs are isodynes, but the reverse is not generally true, as has also
become evident in some recent publications.38–40 We note that early
simulation work on density scaling in charged systems seemed to
indicate that the presence of charges prevented good density scal-
ing,41 although only power-law density scaling was attempted, and
the charges were rather large in that case. Our 2021 work on a simple
molten salt shows that a regime exists where the charges are strong
enough to have non-trivial effects, but good isodynes can never-
theless be observed. On a related matter, it has proved difficult to
establish corresponding state equations for molten salts because the
van der Waals and electrostatic terms in the potential are not mutu-
ally scalable in the same way,42 although recent works have studied
the applicability of entropy scaling for simple monovalent salts43 and
ionic liquids.44

In the absence of isomorphs, we lack a theoretical foundation
to explain the existence of isodynes, which is in fact rather puz-
zling and an open question. In simple liquids, it is likely related
to the phenomenon of excess-entropy scaling.45,46 For more com-
plex molecular liquids, the answer will presumably somehow involve
understanding in a coarse-grained sense which aspects of the micro-
scopic structure are actually relevant for the dynamics of interest,47

but the question also stands for the simple molten salt model stud-
ied in our previous work, where coarse graining would not seem to
be a relevant strategy. In addition, there is no theoretical ground for
assuming any particular scaling form: the argument of the function
f in Eq. (1) is not required to have the form h(ρ)/T but could have,
for example, the form ρ/h′(T), as we shall see later. The approach
taken in this work is, therefore, to focus on identifying curves of
invariant dynamics. Whether a suitable scaling variable can be iden-
tified for a density scaling analysis is an interesting but separate
question.

The purpose of this work is to study, by simulation, a realis-
tic model of an ionic liquid that has been demonstrated to have
isodynes experimentally. If the simulated system likewise has iso-
dynes, it offers the possibility to study these isodynes in much more
detail than what can be performed experimentally. The specific aim
is thus (1) to determine to what extent isodynes exist in the simulated
ionic liquid, (2) to characterize their shape in the phase diagram,
in particular the value(s) of the density scaling exponent γ, and
(3) to document which aspects of microscopic dynamics are indeed
invariant along the identified isodynes. The strategy is as follows.

J. Chem. Phys. 160, 034503 (2024); doi: 10.1063/5.0177373 160, 034503-2

Published under an exclusive license by AIP Publishing

 18 January 2024 13:06:08

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 1. Visual representation of the molecular structures of the (a) cation, 1-butyl-
1-methylpyrrolidinium (Pyr14), and (b) anion, bis(trifluoromethyl)sulfonylamide
(TFSI), simulated in this work.

For item 1, we focus initially on the viscosity and the diffusion
coefficient(s). Comparing contour plots of these quantities (appro-
priately scaled; what we refer to below as “reduced units”) will give
the first indications of isodynes. A series of simulations along puta-
tive isodynes chosen as, for example, viscosity contours allows direct
checks of the invariance of other quantities, including orientational
dynamics.

The system we investigate in this work has the full name
1-butyl-1-methylpyrrolidinium bis(trifluoromethyl)sulfonylamide.
We abbreviate the cation as Pyr14; it has a molar mass of
142.257 g/mol and is also referred to in the literature as C4MPYRR
(the M standing for methyl). The anion, which we abbreviate as
TFSI, has a molar mass of 280.143 g/mol and is also referred to in
the literature as NTF2. The total molar mass is thus 422.4 g/mol.
Both ions have appeared in many studies on ILs; the cation is often
part of a series Pyr1n, where n, equal to four in our case, is the num-
ber of carbon units on the tail. The cation and anion are shown
schematically in Fig. 1. Pyrrolidinium ILs are used in electrochemi-
cal applications because of their wide electrochemical windows and
high electrochemical stability.22

The structure of the paper is as follows. Section II gives
details of the liquid to be studied and of the simulation model
and potential. Section III gives an overview of the simulations and
includes some comparisons with experimental data. In Sec. IV,
we present our procedure for identifying isodynes and describe
our main results, namely the presentation of dynamical data for
different isodynes. Section V discusses the significance of the
results in terms of the larger question of how widespread iso-
dynes are. It also discusses how the concept of coarse-graining
is connected to the existence of isodynes in complex molec-
ular systems. Section VI offers some perspectives for future
work.

II. MODEL AND POTENTIAL
For most of our results, we use a united-atom model for

the Pyr14 cation, i.e., representing each CH2 or CH3 group as a
single sphere in order to reduce the number of degrees of free-
dom and to increase the time step (due to not having to resolve
the CH bond vibration). There are no H atoms on TFSI, so
there is no possible simplification by using united atoms there.

Comparison between all-atom and united-atom models shows that
the latter tends to be less viscous, in general, with viscosities
typically lower by factors 2–3 than the corresponding all-atom
models.48 This does not mean that the all-atom viscosity is nec-
essarily closer to experimental values; however, force field para-
meters should always be selected to provide the most accurate
representation of densities and viscosities for the system under
consideration.

We use literature parameters coming from the OPLS family
of all-atom molecular force fields,49–51 which we have adapted as
necessary to our UA model. The increased interest in ionic liq-
uids has also led to the development of OPLS extensions for this
class of liquids.52,53 For our system, the earliest set of OPLS para-
meters for the anion (TFSI) we have found is in Ref. 54, which
provides all non-bonded interactions (including partial charges)
and all bonded interactions (bonds, angles, and dihedrals). For our
cation (Pyr14), we used the parameters from Xing et al.,55 who used
standard bonded and non-bonded parameters from Refs. 56 and
57. Furthermore, Xing et al.55 obtained the partial charges from
the optimized geometry using the RESP method with the R.E.D.-
III.4 package. We have adapted these all-atom literature parameters
to make corresponding united-atom potentials. To make a united-
atom model of the molecule, we replace the CH2 and CH3 groups
in Pyr14 with Lennard-Jones spheres, with the non-bonded para-
meters for these taken from Refs. 58 and 59. The partial charges
of the united atoms are simply the total charges of the relevant
C and H atoms. To account for polarizability effects in a simple
way, we scale all partial charges by a factor of 0.8;53 this is dis-
cussed in the supplementary material. We use the unit system where
lengths are in Angstrom (Å), energies are in kcal/mol, masses are
in Dalton (u), and charges are in units of the elementary charge
(e). Molecular number densities (total number of ions per unit
volume) are expressed in nm−3 rather than Å−3 for convenience,
however.

Some technical differences from the usual OPLS implemen-
tations should be noted. The interactions are truncated via the
shifted-force method, which is applied at 2.5σ for each interac-
tion rather than having a common absolute cutoff distance. We
also use this cutoff method for the electrostatic (Coulomb) interac-
tions, omitting the long-range part of these (see the supplementary
material). Second, we use Lorentz–Bertholot mixing rules rather
than purely geometric rules, as is standard with OPLS potentials.
Finally, we exclude non-bonding interactions for all atoms involved
in a dihedral interaction rather than applying a 0.5 weighting for
the extreme atoms (1 and 4), as is standard in OPLS. The differ-
ences presumably have some effect on the pressure (and possibly
the bulk modulus), meaning it is wise to be cautious when compar-
ing the simulation-derived pressures with experimental data. While
the choice of mixing rules has been shown to have an effect on the
solubility of NaCl in water,60 such effects are not expected to be
relevant or significant in the present case. All simulations in this
work were performed with Roskilde University Molecular Dynam-
ics (RUMD), Version 3.5.61 We have carried out a limited number
of simulations using an all-atom model. The most interesting ques-
tion here is whether isodynes of the united-atom model are also
isodynes in the AA-model, which can be determined by simulat-
ing the AA model on state points identified as being isodynes of the
UA model.
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III. SIMULATIONS
A. Simulated region of the phase diagram

Figure 2 shows the part of the density temperature phase dia-
gram we have simulated. The overall region of interest in the phase
diagram can be defined by three criteria, which are: (1) requiring
positive pressure, which defines a boundary with a negative slope
on the low-density side, close to the liquid–gas coexistence curve,
the region thus excluded being colored gray; (2) relaxation times
accessible to simulation, allowing the determination of equilibrium
properties within reasonable times, which defines a boundary with
a positive slope on the high-density side, corresponding to a ver-
sion of the glass transition line, the region excluded being colored
red; and (3) an upper temperature limit, in principle corresponding
to the limit of thermal stability of the molecules. For criterion (1),
we use the uncorrected pressure of the model; we estimated the cor-
rected pressure would be about 10 MPa lower due to the long-range
part of the Coulomb interaction (though there are other uncertain-
ties in the pressure), such that the zero-pressure line would exclude
a greater part of the phase diagram. For criterion (2), we define a
timescale τFs from the self-intermediate scattering function curve
(Fs) for the N-atom on the cation (N+) as the time at which the
Fs reaches a value of e−1 of its initial value. The criterion in the
phase diagram is that τFs = 1 ns. Regarding criterion (3), the thermal
stability of ionic liquids has been extensively studied; the so-called
onset temperature (at ambient) pressure is typically between 450 and
750 K.62 For our liquid, the onset temperature has been measured at
724 K.62 Given that our model cannot decompose thermally anyway,
we choose to extend this limit somewhat, up to 1000 K; studying it
over a broader temperature range allows us to get a clearer idea of its
overall behavior. For orientation, we note that the critical point has
been estimated for this IL to be around density 0.57 nm−3 and tem-
perature 1050 K,63 thus well to the left and at a higher temperature
than the points shown.

B. Comparison with experiment: Equation
of state and viscosity

To find out how well the model resembles reality, we compare
pressure, diffusion coefficient, and viscosity with experimental data
from Harris et al.64 The diffusion coefficient data were only provided

FIG. 2. Density-temperature phase diagram showing simulated points. The bound-
ary curve on the lower left represents zero pressure, and that on the lower right
represents impractically slow dynamics, determined by the criterion that it takes
1 ns for the self-intermediate scattering function of N+ to reach a value of e−1.
The q in the self-intermediate scattering function was chosen to be the position of
the main structure factor peak. For our simulations, it is between 0.7 and 0.9 Å−1.

as a function of pressure; given the systematic uncertainties in the
simulated pressure discussed earlier, for comparison, we determined
the experimental densities using the equation of state from Ref. 34,
where the Tait equation was used. A consistency check with the data
in Ref. 64 shows that the uncertainty on the determined experimen-
tal densities is of order 0.3%. Therefore, we can plot the experimental
data together with the simulation data as a function of density on
isotherms.

To assess the systematic errors in our simulated pressure, we
compare it with the experimental data (see Fig. 3). Our simu-
lated pressures are generally greater than the experimental ones,
by up to 20 MPa, when comparing data at equal temperature;
the overall pressure range of our simulated data is comparable
with that of the experimental data, however. The simulated slopes
are smaller than the experimental ones, indicating a bulk mod-
ulus roughly 10%–20% smaller. These discrepancies are at least
partly due to the cutoff, not least regarding the long-range part
of the Coulomb interactions. It is possible that the curves con-
verge (rather than cross) at even higher densities, meaning that
the missing part of the pressure becomes less important at higher
densities.

When comparing the diffusion coefficient, we consider the two
isotherms T = 50 and 75 ○C [see Fig. 4(a)]. The simulated and exper-
imental data are in a similar range, with the simulations generally
being faster (by factors of order 1.5–2). The deviation is larger for
the lower temperature. The data are nearly exponential in density,
with remarkably similar slopes in the semi-log representation, dif-
fering only by a few percent both between isotherms and between
experiment and model.

Figure 4(b) shows the comparison of the viscosity between the
simulations and experiments. As before, experimental and simulated
values are comparable, with the simulated viscosity being lower by
factors up to 3. Considering data for 50 and 75 ○C, the discrepancies
are quite similar to those for the diffusion coefficient, indicating that
the simulated liquid’s dynamics are overall faster by factors of order
2 and 1.5 than the corresponding experimental system, respectively,
for these temperatures. Moreover, it is also clear here that the dis-
crepancy grows as temperature decreases to even lower values, while
the density dependence is remarkably similar across temperatures
and between experiment and model. The combination of differences

FIG. 3. Simulated pressure-density isotherms (dots, solid lines) compared with
experimental data from Harris et al.64 (stars, dashed lines). Statistical errors on
the simulation data have been estimated using standard methods, determining
the number of independent samples based on the time taken for the pressure
autocorrelation to fall below 5% of its initial value. The errors are of order 0.5 MPa
and, in all cases, smaller than the symbol size.

J. Chem. Phys. 160, 034503 (2024); doi: 10.1063/5.0177373 160, 034503-4

Published under an exclusive license by AIP Publishing

 18 January 2024 13:06:08

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 4. Simulated transport coefficients (dots, solid lines) compared with experi-
mental data of Harris et al.64 (stars, dashed lines): (a) diffusion coefficients of the
cation D+ as a function of ρ; (b) η as a function of ρ.

and similarities has consequences for the density scaling exponent,
as will be discussed below.

IV. DYNAMICS AND ISODYNES
A. Reduced units

In our earlier study,36 we used isomorph theory to analyze the
simple salt model of Hansen and McDonald.65 We found lines in
the ρ − T phase diagram where the dynamics are invariant when
scaled according to the isomorph theory. This scaling, introduced by
Rosenfeld,66 uses thermodynamic properties such as number density
ρ and temperature T so that the scaled quantity becomes dimension-
less. These reduced quantities are symbolized by a tilde. Therefore,
a distance r in reduced units becomes r̃ = ρ1/3r. The three funda-
mental scaling factors, along with two derived ones, can be found in
Table I. A more detailed list of scaling factors for isomorph scaling
may be found in Gnan et al.12 The same scaling of quantities to make
them non-dimensional has been used by Dymond et al., who were
inspired by a hard-sphere-type modeling scheme (see, for example,
Refs. 4 and 67).

B. Determining isodynes using viscosity
and diffusion coefficient

Figure 5 shows our data for the cation diffusion coefficient and
the inverse viscosity (also known as fluidity). Fits to second and
third-order polynomials as a function of temperature for each sim-
ulated density are also shown. The diffusivity data included more
scatter, and a third-order polynomial was observed to overfit the
data. The reason for the scatter is likely the relatively small number
(200) of cations in the simulation, leading to statistics that are poorer
than usual for simulated liquids. These fits were obtained primarily

TABLE I. List of scaling factors for isomorph scaling. The first three, energy, length,
and time, can be considered fundamental (alternatively, mass can be taken as fun-
damental); all others can be derived from these three essentially by dimensional
analysis.

Dimension Scaling factor Reduced quantity

Length l0 = ρ−1/3 l̃ = l/l0
Energy E0 = kBT Ẽ = E/E0

Time t0 = ρ−1/3√ m
kBT t̃ = t/t0

Diffusivity l2
0/t0 D̃ = Dρ1/3

(kBT/m)−1/2

Viscosity E0t0/l3
0 η̃ = ηρ−2/3

(mkBT)−1/2

FIG. 5. Fits of (a) reduced diffusion coefficient for cations (specifically the N+ atom)
D̃ and fits to a second-order polynomial and (b) the fluidity, or inverse viscosity 1/η̃,
as a function of temperature for different densities, together with fits to a third-order
polynomial. The colors correspond also to the points shown in Fig. 2. Data for the
lowest and highest densities are plotted in blue and red, respectively (see Fig. 2).

for the purpose of interpolation so that the contours of D̃ and η̃ could
be identified.

Contour plots showing selected contours of D and η are shown
in Fig. 6(a), while contours of the reduced quantities D̃ and η̃ are
given in Fig. 6(b). These plots were generated from a grid of values
using a standard algorithm.68 The contour values have been chosen
to make approximately coincident contours of the two quantities at
T = 598 K. It is clear that the two sets of contours for the nonreduced
quantities do not coincide, while those for the reduced quantities
match remarkably well. The black curves (diffusivity) appear to be
systematically slightly steeper, though this difference is barely larger
than the apparent noise. Therefore, we can identify these common
contours as isodynes or curves of invariant dynamics (in reduced
units).

For further investigation, we choose specifically to work with
contours of reduced viscosity to generate isodynes. New simulations
were then run at densities and temperatures along several different
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FIG. 6. Contours of diffusivity and shear viscosity in the ρ-T diagram in (a) stan-
dard units and (b) reduced units. The contours were chosen to pass through the
following points: ρ = 3.2; 3.6; 4.0; 4.4; 4.8 nm−3, all at T = 598.15 K.

isodynes. For generating these contours of reduced viscosity, we rely
on the fits shown in Fig. 5. For a given value of reduced viscosity
(or inverse reduced viscosity) and for each density, the correspond-
ing temperature was found by interpolation. The covariance matrix
from the polynomial fits was used to construct error bars for the tem-
perature. In the analysis below, we focus primarily on three isodynes,
labeled HV, MV, and LV for high, medium, and low (reduced) vis-
cosity, respectively, and chosen to cover a broad region of the phase
diagram. The other isodynes that have been simulated are shown in
gray in the figures. Before presenting simulation data along the iso-
dynes, we discuss their shapes in Subsection IV C, which is further
illuminated by a density-scaling analysis in Subsection IV D and fol-
lowed by a discussion of the relevance of the Stokes-Einstein (SE)
relation to isodynes in Subsection IV E.

C. The shape of isodynes
The existence of common invariant curves for two (or more)

different dynamical quantities does not by itself imply the scaling
form Eq. (1), which has to be determined from an analysis of their
shapes. Figures 7(a)–7(c) show selected isodynes on linear, double
logarithmic, and semi-logarithmic scales, respectively. In panel (b),
power-law fits are included, with the exponents γ indicated. The γ
values are in the fairly narrow range of 4.3–4.4, seemingly higher for
higher temperatures and lower densities. Alternatively, the contours
can be fitted using exponential functions,

T(ρ) = T0 exp (bρ), (2)

FIG. 7. Selected isodynes shown in (a) lin–lin, (b) log–log, and (c) log–lin plots.
Power-law and exponential fits are included in (b) and (c), respectively. The colored
points indicated the three isodynes HV (η̃ = 2693.0), MV (η̃ = 336.6), and LV
(η̃ = 84.2) that we focused on in the analysis, while the gray ones indicated other
isodynes on which simulations had been run. For the power-law fits, the values of
the density scaling exponent γ are shown by each curve.

the density scaling exponent γ is then no longer constant along a
given isodyne but is defined as the logarithmic derivative

γ(ρ) ≡
d ln h(ρ)

d ln ρ
= bρ = ln(

T
T0
). (3)

The exponential fits are shown in Fig. 7(c). They are slightly bet-
ter than the power-law fits (around a factor of two reduction in χ2).
Apart from fitting the isodynes better, the exponential fits give a
more complete picture of how γ varies in the phase diagram. Along
a given isodyne, one can express γ as a function of either ρ or T,
as indicated in Eq. (3). However, γ can be defined at any point in
the ρ, T-plane as the logarithmic slope of whichever isodyne passes
through that point, and in general, it is a function of both ρ and
T. We can get a sense of how much γ depends primarily on ρ or
T by plotting the fitted values of γ as a function of each separately.
Figures 8(a) and 8(b) show plots of γ vs density for each isodyne
vs ρ and T, respectively. Greater variation of γ overall is apparent
than was seen in the power-law fits, covering values between 3.8
and 4.8 [the constant values of γ from the power-law fits are also
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FIG. 8. Density scaling exponent γ from exponential fits to isodynes plotted as a
function of (a) ρ and (b) T . The values of the b parameter are indicated in the
figure. The values of the parameter T0 were 7.26, 8.22, and 9.16 for HV, MV, and
LV, respectively.

shown in Fig. 8(a) for comparison]. Moreover, it is clear from the
approximate collapse visible in Fig. 8(b) that γ depends primarily
on T and relatively little on ρ if T is held fixed. In terms of the fit
parameters T0 and b from the exponential fit, this means that T0
depends rather little on which isodyne is considered, while b varies
significantly.

The experimental density scaling exponent for this system
was determined to have significantly lower values, in the range
of 2.8–3.0,34 than what we see. Some of the difference can be
explained by the lower temperatures in the experimental measure-
ments (<310 K), but no reasonable extrapolation of the blue curve,
say, will take γ down to 3 at T = 300 K. The greater values of γ in the
model are, however, consistent with the observations made above in
comparing experimental and simulated data for the diffusion coeffi-
cient and viscosity (see Sec. III B, Fig. 4). There, it was noted that
the density dependence was rather uniform, both across different
isotherms and between experimental and simulated data, while the
temperature dependence differs between experiment and model. In
particular, the viscosity increases more rapidly upon cooling at a
fixed density for the experimental system than for the model. This
is equivalent to a smaller γ for the experimental case by the follow-
ing argument: for a given ρ, T starting point, a given increase in ρ
increases both the experimental and model (reduced) viscosity by
the same fractional amount. To compensate for this and return to
the starting contour, the temperature must be decreased. Because the
experimental system is more sensitive to temperature (at a fixed den-
sity), a smaller temperature change is required, corresponding to a
smaller γ. This reasoning makes use of the fact that a given increase
in density gives essentially the same factor increase in viscosity in
both the real and the model systems.

D. Density scaling analysis
The concept of isodynes is closely related to that of density scal-

ing, as mentioned in the introduction. Traditionally, density scaling
has been illustrated by plotting the putative invariant quantity as a
function of some scaling variable Γ. For the simplest case, Γ = ργ0

/T,
corresponding to power-law isodynes T ∝ ργ0 (the subscript 0 on γ
is to emphasize that this is a fixed parameter). For an expression that
can account for the variation of γ with temperature, we can use the
exponential fits from above, recalling that the parameter T0 was rela-
tively insensitive to the choice of isodyne. Taking the last expression
for γ in Eq. (3) as a general expression for γ(ρ, T),

γ(ρ, T) = ln(
T
T0
), (4)

gives isodynes with the form Eq. (2), with a common value of T0 but
different values of b. The latter, or more conveniently, its reciprocal,
is, therefore, a natural choice of scaling variable (an index that can
distinguish different isodynes) and can be expressed in terms of ρ
and T as

Γ ≡ b−1
=

ρ
ln (T/T0)

. (5)

The parameter T0 is, in this formulation, a characteristic tempera-
ture for the material. Figure 9 shows density scaling plots for reduced
viscosity and reduced diffusivity, respectively. The state points used
here are those plotted in Fig. 2, i.e., the grid of points used for the
initial simulations from which isodynes were identified. In each case,
the blue points show the case of power-law density scaling, and we
have chosen γ0 = 4.3 as a representative value from the middle of

FIG. 9. Density scaling plot for (a) reduced viscosity and (b) cation diffusivity. Two
choices of scaling variable Γ are used [see Eq. (5)]: one corresponding to ordinary
density scaling (Γ = ργ0/T) and one corresponding to the T-dependent γ, namely
Γ = ρ/ln(T/T0), with T0 to be 8.2 K from the parameters for the middle curve in
Fig. 8. What is plotted is actually 3Γ − 1 to spread the data out on the x-axis to
make it easier to compare the degree of collapse in the two cases.
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the region of interest [Fig. 8(a)]. The orange points show the choice
Γ = ρ/ln(T/T0) with T0 = 8.2 K, based on the fit to the middle curve
(MV) in Fig. 8. Both choices give reasonably similar scaling col-
lapses of the data. This shows that smaller errors are required to be
able to conclude anything about γ and its temperature or density
dependence using a density-scaling analysis.

The weak (i.e., logarithmic here) temperature dependence of γ,
as evident in Eq. (3), may be a generic feature of ionic liquids. Molten
salts are often referred to as high temperature liquids for obvious
reasons. However, in regard to their physical properties, they are
perhaps better described as “low temperature” liquids in a statistical
mechanical sense as kBT/ε≪ 1, where ε is the well-depth at contact
of the excluded volumes because of the very large magnitude of the
Coulomb energy in units of ambient values of kBT at typical charge
separations in the system. This is illustrated by, for example, the very
low value of the critical temperature (T∗c ≃ 0.05) of the Restricted
Primitive Model (RPM) of an ionic liquid.69 This might lead one to
conclude that the Coulombic terms in ionic liquids might be treat-
able for practical purposes as a uniform background that just shifts
the macroscopic unit collapse curves and that the basic transport
coefficient expressions found for neutral polyatomic liquids (e.g.,
by Dymond et al.) might also apply to a large extent to the present
systems, as may be inferred from the data trends in Fig. 9.

E. Stokes–Einstein relation
Diffusivity and viscosity are often assumed to be related

through the so-called Stokes–Einstein (SE) relation,70 and devia-
tions from it are considered noteworthy, as in the case of several
IL simulations.71–74 It is, therefore, important to investigate to what
extent the SE relation is compatible with the existence of iso-
dynes. The connection between the SE relation and isomorph theory
has been explored recently and suggests a reformulation of the
SE relation.75 To test the standard SE relation, Fig. 10(a) shows the
effective hydrodynamic diameter,

σH =
kBT

2πDη
, (6)

for state points on all simulated isodynes (the coefficient 2 in the
denominator applies for slip boundary conditions). The value of
σH would be constant if the standard Stokes–Einstein relation were
strictly valid, as for a macroscopic hard sphere diffusing in a viscous
liquid. Here, the hydrodynamic diameter is seen to decrease, albeit
weakly, with increasing density.

A modification of the original Stokes–Einstein relationship at
the microscopic scale70 was made by Zwanzig, who derived a hydro-
dynamic diameter given by ρ−1/3, using a semi-empirical quasi-
lattice model for the dynamics of the liquid molecules,76–79 following
earlier works.80,81 The Zwanzig version of the SE formula is given by
the identity, η̃D̃ = const. The same conclusion was made by Costigli-
ola et al.,75 who noted that this formulation is more compatible
with isomorph theory. Indeed, the Stokes–Einstein (SE) relationship
written in isomorph (reduced) units is

D̃η̃ =
1

cπσ̃h
,

D̃η̃ = α =
1

cπ
, if σ̃h = 1,

(7)

FIG. 10. Test of the Stokes–Einstein relation, data from the simulated isodynes.
(a) Effective hydrodynamic diameter; (b) the dimensionless quantity η̃D̃, which
is involved in the isomorph-compatible version of the reduced Stokes–Einstein
relation. The colors indicate points on different isodynes.

where the characteristic diameter is σ̃H = σHρ1/3. The constants c = 2
and 3 correspond to slip and stick boundary conditions. There-
fore, the SE constant α = 1/cπ = 0.159 and 0.106 for slip and stick
boundary conditions, respectively, where σ̃H = 1 at all state points
is taken (i.e., the Zwanzig result). Note that in Eq. (7), when the
SE is expressed in isomorph units, it is evident that there is no
temperature dependence of the SE constant, α.

Figure 10(b) shows the dimensionless quantity α = η̃D̃. It is
clear that this is a better candidate for an invariant quantity reflect-
ing molecular dynamics in the framework of isomorph theory.75

Isomorph theory does not require α to be constant, but it can be
collapsed as a function of temperature on a single curve. At low to
moderate temperatures, α approaches a constant value, which for
the Lennard-Jones (LJ) fluid, for example, is observed to be 0.146.75

Values of α at high density are ∼0.15 for LJ, 0.17 for hard spheres,
and 0.14 for the one-component plasma and Yukawa (κ = 2) poten-
tial systems,82 and for TIP4/ice water, α = 0.15 ± 0.02.83 Our data
are consistent with a constant value in the range 0.15–0.20 and,
therefore, consistent with these other studies on model systems and
the results of Costigliola et al.,75 suggesting the possibility that this
quantity is largely invariant across a range of different chemical
systems.

The physical content of the “isomorph-compatible,” or the
Zwanzig version of the Stokes–Einstein relation, is that the effec-
tive hydrodynamic diameter refers not to a fixed molecular size but
rather to the space available for a molecule to occupy, which is
determined by the density. The existence of isodynes implies that
η̃D̃ is constant along any given isodyne, but that by itself does not
imply that the constant is independent of which isodyne is consi-
dered. Therefore, the collapse to a single value (within the
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simulation statistics), which is consistent with the isomorph version
of the SE relation, is a stronger result.

F. Simulations along proposed isodynes
In this and the following subsections, data from simulations

carried out on the proposed isodynes are presented. The isodynes
were identified as described in Subsection IV B.

The viscosity, self-diffusion coefficient, and other dynamical
quantities are investigated to discover the extent to which they
exhibit invariant dynamics. Figure 11 shows the values of the
reduced diffusion coefficient and viscosity along the simulated iso-
dynes. The resulting curves are reasonably flat, which confirms the
validity of the procedure for determining the contours. The visible
variations are larger than the statistical errors, though, which may
result from the uncertainties in locating precisely the isodynes in the
fitting process.

We have seen that the density scaling exponent of our united-
atom model is larger than the value determined experimentally for
this IL. A possible reason is the effect of the hydrogen atoms on the
temperature dependence of the dynamics. To test for such differ-
ences, we have carried out a limited number of simulations of an
all-atom (AA) model of the same liquid. Details of the AA model
can be found in Ref. 35. Rather than repeating the generation of iso-
dynes from scratch, we have simulated the AA along the isodyne
points identified for the UA model. The diffusivity and inverse vis-
cosity in reduced units are shown along isodyne HV in Fig. 12, where
they are compared to the corresponding data for the UA model. As
expected, the AA model is slower to evolve, showing lower diffusiv-
ity and fluidity by factors of 2–3. The statistical error in the AA data
is also smaller, allowing a slight downward trend to be discerned.

FIG. 11. Dynamics along all simulated isodynes in scaled units. The colored ones
are the three main simulated isodynes we have focused on. The gray ones are
other isodynes we simulated but have not studied in detail. They are included here
as extra checks that our procedure yields reasonably invariant dynamics along iso-
dynes. (a) Scaled diffusion coefficient for N+ in the cation, and (b) scaled inverse
viscosity (fluidity).

FIG. 12. Comparison of dynamics between the united-atom (UA) and all-atom (AA)
models along isodyne HV in scaled units. (a) Scaled diffusion coefficient for N+ in
the cation, and (b) scaled inverse viscosity (fluidity).

However, this trend is consistent with the data for the UA model,
and the quantities shown do not vary more for the AA model than
they do for the UA model. This excludes the absence of H atoms
from being the cause of the higher γ in the simulations.

To go beyond the scalar quantities D̃ and η̃, the time-dependent
functions from which they are derived are explored. These include
the mean-square displacement (MSD) of N+ and the shear stress
autocorrelation function. These are shown along isodyne MV and
the isotherm T = 598 K in Fig. 13. There is good collapse for the
MSD [panel (a) of the figure], apart from a region at short times
where presumably some internal dynamics, not invariant in reduced
units, is active. Data for the isotherm T = 598 K are shown for com-
parison. For the stress autocorrelation function [panel (b) of the
figure], there is also a quite good collapse, particularly when com-
pared to the isothermal data. Some variation is visible at small and
intermediate times. In particular, the small oscillations at interme-
diate times of 1–10 reduced units vary slightly along the isodyne. In
fact, in nonreduced units, these are aligned in time (data not shown);
these are presumably associated with particular internal motions
that are not particularly coupled to the overall molecular dynamics
and have their own fixed characteristic time scales.

This paper focuses on dynamics rather than structure. Never-
theless, before continuing our investigation of dynamical invariance
in Sec. IV G with rotational dynamics, it is worth making the point
that the curves identified here are isodynes rather than isomorphs. To
this end, we show the x-ray structure factor along the isodyne MV in
Fig. 14(a).

It is clear that the structure is far from invariant. It is also clear
that most of the variation is in the low-q “charge-ordering” peak.
Indeed, showing S(q) for only two nearby densities in Fig. 14(b)
reveals this contrast more strikingly: for small density changes, the
main peak is quite invariant while the charge peak changes visibly,
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FIG. 13. Reduced-unit MSD (a) and stress autocorrelation (b) along isotherm
T = 598 K (blue curves) and isodyne MV (orange curves).

FIG. 14. (a) X-ray structure factor along isodyne HV, calculated by the Fourier
transform of the partial radial distribution functions and summing over all pair types
with appropriate weights. Shading is darker for lower densities. (b) Same as (a),
but including only the lowest two densities, 3.92 and 4.0 nm−3, differing by 2%.

becoming smaller and shifting to a slightly lower q with increas-
ing density. This is precisely what has been observed experimentally
for this ionic liquid.34 The overall point of Fig. 14, however, is that
the structure varies substantially along a curve on which dynamics

is rather invariant. Furthermore, examples of structural variation
along isodynes can be found in Ref. 35, where no aspect of the
structure could be identified that is as invariant as the dynam-
ics. This is a strange situation since it is a paradigm in material
physics that structure determines dynamics, or at least plays a crucial
role. For example, a well-known theory for viscous liquid dynamics,
mode-coupling theory, is based entirely on this premise.84,85

G. Orientational dynamics along isodynes
To widen the scope of dynamical measures encompassed by

isodynes, we study other measures of dynamics, specifically molecu-
lar rotations. This is performed by defining a normalized vector e(t)
in terms of the atoms within a given molecule and calculating the
time autocorrelation function P1(t) as the average dot product of
this vector with itself at different times,

P1(t) ≡ ⟨v⃗(t0) ⋅ v⃗(t0 + t)⟩. (8)

Here, the notation P1 refers to the l = 1 Legendre polynomial.
Borodin and Smith defined rotational correlation functions more
or less similarly in their study of a simulated Pyr13-TFSI ionic liq-
uid, including P2(t) functions.86 They were interested in the degree
of anisotropy, i.e., differences in relaxation rates between rotations
in different directions, and found, not surprisingly, that rotations
of vectors aligned with the long axes of the ions are the slowest.
Our primary concern is the degree of invariance along isodynes and
whether this varies for different rotations. It should be noted that
a rotational correlation function defined in this way is sensitive to
two components of rotation, namely rotations about any two axes
orthogonal to the given vector. Obviously, rotations about the given
vector cannot contribute to the decay of the corresponding corre-
lation function. Starting with the cation, we define three vectors as
(a) normal to the plane containing N+ and the two R1 groups, (b)
the vector from N+ to the point midway between the two R1 groups,
and (c) the vector from N+ to the end of the tail T4. The first two
vectors are meant to test the rotation of the ring, while the latter is
meant to test the rotation of the tail. The corresponding P1(t) cor-
relation functions are shown in Figs. 15(a)–15(c), respectively, along
with molecular diagrams indicating the vectors in the insets. Data for
the different state points along the isodyne MV are shown as blue
points, while for comparison, data along the isotherm T = 598 K
are shown in gray. All three correlation functions show invariance,
such that the different blue datasets cannot be distinguished. By
comparison, the gray isotherm data are spread out, decaying over
a broad range of time scales. The overall shapes of the three cor-
relation functions on the isodyne are similar, showing an emergent
two-step appearance, with the relaxation time increasing somewhat
from (a) to (b) to (c). The degree of invariance is greatest for part (b);
for the other two functions, the blue data points show a small degree
of spreading.

For the anion, we consider two vectors: (a) the vector from one
S atom to the other (due to the molecule’s symmetry, the order is
irrelevant), and (b) the normal to the plane containing N− and the
two S atoms. The correlation functions are shown in Figs. 16(a) and
16(b), respectively, again from isodyne MV (blue points) and from
isotherm T = 598 K (gray points). The isodyne data in panel (a) show
reasonable invariance, i.e., collapse, although not as striking as that
of the cation rotations in Fig. 15. On the other hand, the data in
panel (b) vary rather more along the isodyne. In fact, the amount of
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FIG. 15. Orientational dynamics of the cation along isodyne MV, shown in differ-
ent shades of blue for different densities, together with the same function on the
isotherm T = 598 K, shown in gray, for more or less the same range of densities.
The autocorrelation function of (a) the normal vector to the plane spanned from
the two R1 groups and N+, (b) the vector from N+ to the point between the two R2
groups, and (c) the vector from N+ to the end of the tail (T4).

variation is almost comparable to that along the isotherm. This is a
striking and noteworthy result: while most of the rotational correla-
tion functions we have investigated show invariance, one does not.
The vector involved in the non-invariant rotation is sensitive both to
rotations of the anion about its long axis and to one rotation perpen-
dicular to the long axis. The non-invariant behavior must arise from
rotations about the long axis; otherwise, it would also be manifested
in the other correlation function [panel (a)].

The molecular rotations that show invariance are somehow
connected to the other dynamical properties showing invariance

FIG. 16. Orientational dynamics of the anion along isodyne MV. The autocorrela-
tion function of (a) the vector between the two S atoms in the anion and (b) the
normal vector to the plane spun from the two S atoms and N−.

along the isodynes, while the rotations that do not must be decou-
pled from the others and from the other invariant dynamical quan-
tities. From the results of this subsection, we see that the rotations
associated with a high moment of inertia are invariant, while the
case of non-invariant rotational dynamics involves a low moment
of inertia (the long axis of the TFSI anion). This is plausible when
considering a molecule’s interactions with its neighbors. A rotation
with a high moment of inertia would be more likely to be geo-
metrically constrained by interactions with neighboring molecules
than one with a low moment of inertia. Indeed, it makes sense that
a molecule can rotate more freely about an axis of low moment
of inertia without influencing the overall dynamics of the system.
The connection between these observations and the other invariant
aspects of the dynamics will be discussed below in the context of
coarse-graining.

V. DISCUSSION
A. Significance of isodynes

How widespread is the existence of isodynes? In an extensive
study,87–95 Assael, Dymond, and co-workers analyzed experimen-
tal data on the transport coefficients (coefficients of self-diffusion,
viscosity, and thermal conductivity) for a wide range of liquids (see
also Ref. 4). They found correlations between them inspired by the
hard spheres model but which are consistent with isomorph theory.
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In their approach, the reduced unit form of the transport coeffi-
cient is a function of the molecular volume V scaled by a limiting
high density reference value V0(T), where the latter is tempera-
ture dependent but does not depend on the quantity in question.
This is similar, indeed essentially equivalent, to the isomorph-
based analysis by Costigliola et al.,96 where the reduced transport
coefficients are functions of T/Tref(ρ) (i.e., using ρ, equivalently vol-
ume, as the parameter for the reference temperature instead of the
other way around). Indeed, the Lennard-Jones data for V0(T) pre-
sented by Dymond67 is consistent with the latter function being an
isomorph—a power-law fit of T vs 1/V0 gives a good fit with an
exponent close to 6, consistent with density-scaling exponents for LJ
systems determined in isomorph studies.17 The systems studied by
Assael et al. include alkanes,87 simple organic molecules,88 mixtures
of n-alkanes,89 n-alcohols,92 refrigerants,93 and more recently, ionic
liquids.95 In fact, their analysis is not just consistent with isomorph
theory but shows the existence of isodynes–curves [in their formal-
ism, curves along which the “reduced molar volume” Vr ≡ V/V0(T)
is constant] along which three transport quantities are invariant in
reduced units. This work constitutes a large body of experimental
evidence for isodynes. The theoretical basis for their analysis is the
hard-sphere model for which the transport coefficients are known
and appropriate adjustment factors to account for the non-spherical
nature of the molecules.

The important conclusion from the work of Dymond et al.
is that the transport coefficients can be invariant on scaling with
isomorph units without any reference to structural scaling (i.e., iso-
morph behavior) and, therefore, isodynes may be more prevalent
than isomorphs, and it is perhaps isomorphs that are, in fact, the
exception rather than the rule outside the domain of model systems,
such as Lennard-Jones. In addition, recent papers by Khrapak and
Khrapak38,39 indicate that one can have isodynes without isomorphs
in the context of reference density scaling, which is observed at low
and medium densities (see also Ref. 40). The relatively recent inves-
tigations of viscuits (single trajectory contributions to the viscosity)
also suggest that there is an underlying common invariance to the
factors that determine the values of the transport coefficients that is
insensitive to state point.97–100

The discovery of isodynes can be viewed as opening a way
to generalize isomorph theory. Apart from isomorphs, a natural
framework is Rosenfeld excess entropy scaling,66 while another
generalization of the isomorph concept for molecular systems intro-
duced the term pseudo-isomorphs.101 Rosenfeld’s excess-entropy
scaling has recently been reviewed by Dyre45 and has typically con-
cerned the three properties of viscosity, self-diffusion, and thermal
conductivity, whose values in reduced units are fixed by the excess
entropy,

Sex ≡ S(ρ, T) − Sid(ρ, T), (9)

where S is the full entropy and Sid is the entropy of the ideal gas at the
same density and temperature. Excess-entropy scaling can be justi-
fied if a system can be mapped either to a hard-sphere system or to
an inverse power law system, but neither of these seems plausible
in the case of a complex molecular system such as the one stud-
ied here. There is no consensus as to the origin of excess-entropy
scaling; clearly it follows when there are exact or approximate iso-
morphs, such that both structure and dynamics are invariant in

reduced units along curves of constant excess entropy (configura-
tional adiabats). However, liquids involving flexible molecules can
have isomorphs that are not strictly configurational adiabats. The
contribution to excess entropy from flexible bonds, for example,
is decoupled from the invariant dynamics and structure. In some
simple cases, isomorphs can be generated by removing the bond
dynamics according to a preset procedure.101 The resulting iso-
morphs are termed “pseudo-isomorphs” to emphasize that they are
not configurational adiabats. Moreover, atomic systems with charge
can exhibit invariant dynamics but not invariant structure on config-
urational adiabats.36 In fact, considering the three types of invariant
quantity, the following situations may be considered:

A. Invariant structure (full or partial).
B. Invariant dynamics (full or partial).
C. Correspondance of A or B with invariant excess entropy.

We can identify systems with all three characteristics (true iso-
morphs), just A and B (pseudoisomorphs), just B and C (simple
ionic liquids, excess entropy scaling), or just B (complex ionic and
small molecule liquids). In particular, isomorphs constitute a spe-
cial case of isodynes, while excess entropy scaling and isodynes both
constitute generalizations. The underlying connection between these
related concepts is as yet unclear: Dyre concluded that “it remains
an open question whether all aspects of excess-entropy scaling and
related regularities reflect hidden scale invariance in one form or
another.”45 This question remains open, and we believe that iso-
dynes are part of the resolution of this issue. A theoretical framework
is required to unify these different combinations. It is likely that
coarse-graining, to be discussed in Sec. V B, has a key role to play.

B. Coarse-graining
Coarse-graining, the simplification of a model system by

removing some of the degrees of freedom, is often presented as a
practical tool to increase the time scales of simulations; a natural
requirement is that the overall dynamics of the remaining degrees
of freedom be preserved (apart from a possible rescaling of time;
typically, the coarse grained system intrinsically evolves faster than
the original48). However, it can also be a conceptual tool to under-
stand how simplicity emerges in complex systems when irrelevant
microscopic degrees of freedom are ignored. Ideally, one should be
able to identify an analog to the excess entropy that is defined in
the coarse-grained system and whose contours coincide with the
isodynes. The fact that our two models, united-atom and all-atom,
where the former can be understood as a coarse-graining of the
latter, share isodynes is encouraging in this respect. In fact, we sug-
gest that the preservation of isodynes, where they exist, should be a
requirement of any reliable coarse-graining procedure.

Our results can be encapsulated by the statement that
“coarse-grained dynamics are simple.” The coarse-grained dynam-
ics includes the dynamical quantities that are defined for a suitably
coarse-grained model, such as shear-viscosity, self-diffusion, and
most molecular rotations. In other words, these are intermolecular
dynamics but not intramolecular dynamics (which is largely decou-
pled from isodynes). “Simple” means that isodynes exist, in effect
making the phase diagram one-dimensional as far as dynamics is
concerned. The molecular rotations that are not invariant on iso-
dynes, i.e., are decoupled from isodynes, can be characterized as
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those with lower moments of inertia, for example, a rotation about
the long axis of TFSI, Fig. 16(b). However, it is not the moment of
inertia itself that is relevant; it is more that such rotations disappear
as degrees of freedom under sufficient coarse graining, under which,
for example, TFSI would be represented as a cylinder with rounded
ends.

Another example of the distinction between invariant CG
degrees of freedom and decoupled intra-molecular degrees of free-
dom turns up in the stress autocorrelation function, whose overall
decay is quite invariant along isodynes but in which the small
wiggles, presumably associated with intra-molecular degrees of
freedom, are not.

However, just as coarse-graining, as a simulation tech-
nique, does not in practice guarantee faithful reproduction of
dynamics,102,103 as a conceptual tool, it is not guaranteed that a sim-
ple entropy-like quantity characterizing isodynes can be identified.
Moreover, coarse-graining would not seem to be able to explain
the case of simple ionic liquids, which have isodynes but not iso-
morphs, since there are no obvious degrees of freedom that could be
removed. Coarse-graining a complex ionic liquid would still leave
the charge-ordering unaffected, an aspect of structure that is not
invariant.

We consider that a carefully designed CG model could, in prin-
ciple, illuminate the phenomenon of isodynes. It is significant that
the AA version of our model seems to have essentially the same
isodynes as the UA model. However, there is a question of how to
guarantee this feature if one were to develop a more coarse-grained
model than the UA one. One proposal in the literature, based on
the concept of relative entropy, addresses more or less explicitly the
slope of isodynes by coarse-graining to soft-sphere systems (inverse
power-law potentials).104 Ideally, one would not explicitly target the
shapes of isodynes but identify some structural property whose con-
sistency from AA to UA to CG would ensure the consistency of the
isodynes; in that case, one could claim to have understood the pres-
ence of the latter in the more fine grained models. In fact, preserving
the location of isodynes could be a useful criterion for confirming
dynamical consistency between the AA and CG models.

VI. SUMMARY AND PERSPECTIVES
The main results of this work can be summarized as follows:

1. For these model ionic liquids, there exists a set of curves,
termed isodynes, along which a number of dynamical quan-
tities are invariant, even though there are no isomorphs for
these systems.

2. The curves T(ρ) along an isodyne can be well fitted by an
exponential form, which corresponds to a density scaling
exponent, γ, which increases with increasing density along a
given isodyne. When considering the overall picture of how
γ varies in the phase diagram, however, it depends more on
temperature than on density [Fig. 8(b)].

3. The quantities that have been tested and shown to be (approx-
imately) invariant are viscosity, the stress auto-correlation
function, the mean squared displacement and the diffusion
coefficient, and several rotational correlation functions. Of
these, three are associated with cation rotations and one with
anion rotation.

4. One tested anion rotational correlation function was not
invariant. This is sensitive to rotations about the “long axis” of
the molecule. A consequence of this lack of invariance is that
this motion is not very important for, and is largely decou-
pled from, the general behavior of the liquid and could be
“coarse-grained away.”

We are far from having exhausted the possibilities for study-
ing dynamical invariances in this IL system. With the exception of
viscosity and the stress-autocorrelation function, our analyses per-
tained only to single-molecule dynamical properties. A natural next
step would be to investigate the correlated motion of ions. One issue
is the existence of ion pairs.22 Correlations are particularly impor-
tant in the context of the electrical conductivity, where they lead
to departures from the Nernst–Einstein relation,73,105 according to
which the electrical conductivity is determined by the diffusivities of
the ions without regard to correlations. Furthermore, it is plausible
that correlations are strongly affected by Coulomb interactions and
thus might be a dynamical feature that varies along isodynes, i.e., an
exception to dynamical invariance.

Regarding the relation between isodynes and coarse-graining,
the role of charges seems to be separate from that of intra-molecular
degrees of freedom. Work on non-charged, but otherwise complex
and flexible, molecular systems will also be necessary to better clarify
this. To summarize, it is clear from this work that molecular simula-
tion will continue to be an important tool in helping to understand
and characterize these complex charged molecular systems, and in
particular, the identification of isodynes, performed here for the first
time, will be relevant for providing guidelines for designing practical
applications involving them.

SUPPLEMENTAL MATERIAL

The supplementary material contains further details of the
model and force field, including tables of parameters, a description
of our approach to handling Coulomb forces, tests relating to cut-
offs, details relating to the analysis, and additional data for rotational
correlations.
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