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Estimating melting curves for Cu and Al from simulations at a single state point
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Determining the melting curves of materials up to high pressures has long been a challenge experimentally and
theoretically. A large class of materials, including most metals, has been shown to exhibit hidden scale invariance,
an approximate scale invariance of the potential-energy landscape that is not obvious from the Hamiltonian.
For these materials the isomorph theory allows the identification of curves in the phase diagram along which
structural and dynamical properties are invariant to a good approximation when expressed in appropriately scaled
form. These curves, the isomorphs, can also be used as the basis for constructing accurate melting curves from
simulations at a single state point [U. R. Pedersen et al., Nat. Commun. 7, 12386 (2016)]. We here apply this
method to the metals Cu simulated using the effective medium theory and Al simulated using density functional
theory (DFT). For Cu the method works very well and is validated using two-phase melting point simulations.
For Al there are likewise good isomorphs, and the method generates the melting curve accurately as compared to
previous experimental and DFT results. In support of a recent suggestion of Hong and van de Walle [Phys. Rev.
B 100, 140102 (2019)], we finally suggest that the tendency for the density-scaling exponent γ to decrease with
increasing density in metals implies that metals in general will undergo reentrant melting, i.e., have a maximum
of melting temperature as a function of pressure.

DOI: 10.1103/PhysRevB.109.104109

I. INTRODUCTION

Melting is the physical process where a substance changes
phase from solid to liquid [1–3]. For a pure one-component
substance at a given pressure, the melting temperature Tm is
the temperature at which both solid and liquid phases can
coexist in equilibrium. In general, the melting temperature
depends on the pressure and the term “melting curve” refers to
the functional dependence of the melting temperature on the
pressure in the phase diagram.

Melting of metals, especially at high temperatures and
pressures, is of particular interest for a variety of disciplines
from material science to geophysics and planetary science.
For example, understanding the conditions in the core of the
earth has long been an intriguing endeavor, evidenced by the
many papers on high-pressure melting of iron and iron-rich al-
loys alone [4–10]. Determining high-pressure melting curves
in metals in general is an active field, both on the experimental
side [11–14] and from theory and simulations [15–18].

Predictions of melting curves have a long history, starting
with the first attempt made by Lindemann [19] in 1910. The
Lindemann melting criterion, which in its well-known form
is actually an extension to Lindemann’s original work made
several years later by Gilvarry [20], states that melting ap-
proximately occurs when the root-mean-square amplitude of
the thermal vibration exceeds the threshold value of 10% of
the nearest-neighbor distance.

In simulations, the melting temperature can be determined
similarly to experiments by observing the phase transition
directly, such as the fast heating (Z method) where a small
slab of initially solid particles is heated until it melts [21,22].
Without particular nucleation sites such as surface defects that

are available for melting in nature, however, this procedure
tends to lead to a meta-stable, super-heated crystal phase prior
to melting and thus overestimates the melting temperature
[23]. This is sometimes counteracted by combining the tem-
perature found from melting with the temperature found from
observing the phase transition when freezing the same system.
The reversed process results in an underestimated tempera-
ture following from the absence of crystallization seeds from
which crystallization can start more easily.

Accurate estimates of the melting temperature can be given
by coexistence methods, provided the system is large enough
[24–27]. Here, solid and liquid phases are brought in direct
contact with each other. The interface between the phases is
monitored, and the coexistence state point is inferred from
the interface position when the system has stabilized. The
interface-pinning method [28] is a development of the coexis-
tence method, where the interface is preserved in equilibrium
by an extra term in the Hamiltonian. An advantage of this
is that the system can be stabilized in a much smaller cell
and thus requires less computationally expensive simulations
while maintaining accuracy.

All these techniques only determine a single point (p, Tm)
on the melting curve at a time. Tracing out all points on
the melting curve in this way using ab initio simulations
can be prohibitively costly computationally. Thus, predictions
of the melting curve usually involve some kind of theoret-
ical interpolation or extrapolation to make a curve out of
only a few points. Reflecting the traditional perception of
melting, i.e., higher pressure gives a higher melting tem-
perature, these procedures usually lead to predictions where
the temperature monotonically rises with increasing pressure.
This includes, for example, the widely accepted Lindemann

2469-9950/2024/109(10)/104109(18) 104109-1 ©2024 American Physical Society

https://orcid.org/0000-0002-3782-4914
https://orcid.org/0000-0003-1941-3385
https://orcid.org/0000-0002-0770-5690
https://orcid.org/0000-0002-2519-2403
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.104109&domain=pdf&date_stamp=2024-03-14
https://doi.org/10.1038/ncomms12386
https://doi.org/10.1103/PhysRevB.100.140102
https://doi.org/10.1103/PhysRevB.109.104109


FRIEDEHEIM, HUMMEL, DYRE, AND BAILEY PHYSICAL REVIEW B 109, 104109 (2024)

and Grüneisen laws [19,29,30] as well as the Simon-Glatzel
equation [31].

Recent ab initio simulations have shown that a wide class
of materials, including metals, approximately obey a hidden
scale invariance [32]. This means that curves exist in the
phase diagram called isomorphs along which structure and
dynamics are approximately invariant in properly chosen units
[33–35]. The isomorphs are almost parallel to the melting
curve, and an isomorph starting from a state point at coexis-
tence can be regarded as a zeroth-order approximation to the
melting curve in the face of hidden scale invariance. Indeed, if
the property of structural invariance held for two-phase con-
figurations, the melting curve would be exactly an isomorph.
Building on this, Ref. [36] gives a prescription of how the
pressure-temperature melting curve, as well as the freezing
and melting densities, can be recovered over a wide range
of pressures by a first-order Taylor expansion from the two
reference isomorphs of the solid and the liquid constructed
at a single coexistence point. The method involves sampling
relatively few configurations from one reference-point sim-
ulation and scaling them to the densities where an estimate
for the melting pressure and temperature is desired. Instead of
performing molecular dynamics or Monte Carlo simulations
it suffices to evaluate the total energy and the virial of the
scaled configurations to obtain both an estimate for the melt-
ing pressure and the melting temperature at the corresponding
density. This involves much less computational effort than
performing simulations at the respective densities and temper-
atures. For example, if the configurations are sampled every
100 simulation steps, the computational work to calculate the
melting curve is of order 100 times smaller per point on the
melting curve in the region where interpolation or extrapola-
tion is used. This method has already been validated for the
Lennard-Jones system and for realistic potentials for noble
elements [36,37]. This paper investigates this method for the
melting of metals based on ab initio and effective medium
theory simulations and demonstrates its computational
advantage.

The proposed method is limited to regions where hidden
scale invariance holds qualitatively. Although this may be a
pressure range covering hundreds of GPa this method can-
not predict structural transitions, such as fcc-bcc transitions
[38,39], Peierls-type transitions [22,40,41], or metal-insulator
transitions [42]. In the case of bcc-fcc transitions of met-
als hidden scale invariance is still useful to individually
trace the two coexistence curves of the liquid and either
of the solid phases. The liquid-bcc-fcc triple point needs
to be found in a separate calculation and marks the tran-
sition from one interpolation region to the next. In case of
metal-insulator phase transitions hidden scale invariance is
qualitatively absent in the insulating phase and the proposed
melting curve prediction method is only useful for metallic
phases.

An interesting by-product of the analysis in terms of iso-
morphs is that reentrant melting may likely be a general
feature of metals. Reentrant melting is where the melting
curve reaches a maximum temperature at some high pressure
before decreasing at even higher pressure; at a fixed temper-
ature below the maximum one can go from liquid to crystal
and back to liquid again only by increasing pressure. This is

supported by a recent density functional theory (DFT) study of
melting curves of metallic elements at high pressure by Hong
and van de Walle suggesting that reentrant melting is much
more widespread than previously realized [43].

The structure of the paper is as follows. In Sec. II we
present an overview of isomorph theory, including the method
used to generate isomorphs and the method for determin-
ing the melting curve from two isomorphs (one liquid and
one crystal), starting at a known point on the melting curve.
Section III presents the melting curve method applied to Cu
simulated using effective medium theory (EMT). Section IV
investigates the degree of isomorph invariance of structural
and dynamical quantities for Al along the computed iso-
morphs using DFT and presents our results for the melting
curve of Al. A discussion of the implications for reentrant
melting is given in Sec. V.

II. HIDDEN SCALE INVARIANCE AND ISOMORPHS

Isomorph theory has been developed over a series of papers
[33,44–47]. An updated, generic version of the theory can
be found in Ref. [34], and reviews in Refs. [35,48,49]. The
following introduces briefly the concepts of isomorph theory
that are relevant for this paper. A key concept is hidden scale
invariance, which refers to an underlying approximate sym-
metry that makes the phase diagrams of materials possessing
this symmetry particularly simple. “Simplicity” in this sense
of the word is referred to as R simplicity [34]. Hidden scale
invariance is defined by the property that the potential energies
of same-density configurations maintain their ordering under
uniform volumetric scaling. This condition can be expressed
[34] as

U (Ra) < U (Rb) ⇒ U (λRa) < U (λRb), (1)

where U (Ri ) is the potential energy of the configuration Ri

(i.e., all particle coordinates) and λ is a scaling parameter. This
condition is obeyed to a good approximation in the condensed
part of the phase diagram of various systems, including both
solid and liquid phases of real as well as model systems
like the Lennard-Jones and Yukawa systems. Equation (1)
is general: it does not assume equilibrium configurations or,
if these are in fact equilibrated, does not assume the same
temperature. It has been shown in simulations that hidden
scale invariance is often spoiled by directional interactions as
well as by competing length scales when more than one kind
of interaction is present [45]. Thus, while most metals and
van der Waals bonded molecular systems are expected to be
R simple, hydrogen- and covalently-bonded systems are not.
Ionic and dipolar systems constitute an interesting in-between
case [35,50].

A. Strong virial potential-energy correlations

Systems that for most of their configurations obey the
condition of Eq. (1) have previously also been referred to as
strongly correlating [44,45]. Recall that the virial W at a given
state point is the contribution from interactions to the pressure
via PV = NkBT + W ; W is an extensive quantity of dimen-
sion energy. The strong correlation refers to the instantaneous
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equilibrium fluctuations of the potential energy U and W ,

�W ∼= γ�U, (2)

where � indicates instantaneous deviations from the canon-
ical constant-volume (NV T ) ensemble average. A system is
considered strongly correlating in the isomorph sense if R >

0.9, where R is the (Pearson) correlation coefficient

R = 〈�W �U 〉√
〈(�W )2〉〈(�U )2〉

, (3)

with the angle brackets denoting NV T expectation values.
The proportionality factor γ between virial and potential-
energy fluctuations is given as the generally state-point-
dependent linear-regression slope for the particle number
density ρ and the temperature �

γ (ρ, T ) = 〈�W �U 〉
〈(�U )2〉 . (4)

The factor γ is called the density-scaling exponent [44].
This quantity may be determined by application of the gener-
ally valid equality, derived in Ref. [33],

γ (ρ, T ) =
(

∂ ln T

∂ ln ρ

)
Sex

, (5)

in which Sex is the excess entropy defined as the deviation
from the ideal-gas entropy at the same temperature and den-
sity. Thus, as a thermodynamic quantity, γ gives the slope in
the logarithmic density-temperature phase diagram of curves
of constant excess entropy. The equality of Eqs. (4) and (5) is
a general statistical-mechanical identity valid for any system
[33].

Curves of constant excess entropy exist for any system;
for an R-simple (strongly correlating) system such curves are
called isomorphs. Thus, systems only have isomorphs in the
part of their phase diagram where they are strongly corre-
lating or, equivalently, where most of the physically relevant
configurations obey Eq. (1). Along isomorphs, structure and
dynamics are invariant to a good approximation, and this fact
effectively reduces the dimension of the phase diagram by
one. To observe the invariance, quantities must be rescaled
into an appropriate dimensionless form using so-called re-
duced units. For example, lengths at different densities can
only be directly compared after dividing by the average
interparticle spacing ∝ρ−1/3. Likewise, times are given in
multiples of the time a particle at thermal velocity needs to
pass the interparticle spacing (apart from a numerical factor
of order unity), ρ−1/3√m/kBT , and energies are scaled by the
thermal energy kBT [33].

B. Direct isomorph check

Isomorphs can be traced out in a stepwise fashion, where
γ can be found from fluctuations in simulations at each
state point via Eq. (4) and numerically integrating Eq. (5) by
the Euler or the Runge-Kutta algorithm, changing density in
small increments. This is, however, not practical for compu-
tationally intensive simulations like those based on ab initio
methods, as this method requires simulating at every step.
Instead, the present work uses the so-called direct isomorph
check (DIC).
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FIG. 1. Determining the temperature T2 at a scaled density ρ2

from an EMT simulation of 2048 atoms of liquid Cu at T1 = 2008 K,
ρ1 = 0.0831 Å−3, corresponding to P = 16.0 GPa. The unscaled
potential energies are taken from configurations of the initial sim-
ulation. The same configurations are then uniformly scaled to the
target density, here ρ2 = 1.1312ρ1. The direct isomorph check finds
the temperature T2 for the given density ρ2 of a state point that is
on the same isomorph as the initial state point (ρ1, T1). Plotting the
potential energies of scaled versus unscaled configurations results in
a scatter plot where the slope of the best-fit line is T2/T1 [see Eq. (7)],
resulting in the value 2914 K for T2.

The DIC was introduced in Ref. [33] and works as fol-
lows. For any two state points on the same isomorph one can
make a one-to-one correspondence between their respective
microscopic configurations Ri = (r(i)

1 , . . . , r(i)
N ), specifically

between those that have the same reduced coordinates
ρ

1/3
1 R1 = ρ

1/3
2 R2, i.e., can be scaled uniformly into one an-

other. Then, according to the isomorph theory [33], the
corresponding configurations have almost identical configu-
rational NV T canonical probabilities,

exp

(
−U (R1)

kBT1

)
∼= C12 exp

(
−U (R2)

kBT2

)
, (6)

where C12 is a constant specific to this pair of state points.
Using this, Eq. (6) expressed in terms of fluctuations around
the respective means becomes

�U (R2) = �U

[(
ρ1

ρ2

)1/3

R1

]
∼= T2

T1
�U (R1). (7)

From this the meaning of the slope when plotting the ener-
gies as shown in Fig. 1 becomes clear: plotting the potential
energies from configurations at a state point (ρ1, T1) against
those determined from the same configurations scaled to an-
other density ρ2 results in a scatter plot whose slope is T2/T1,
thus allowing T2 to be determined [33,34]. The same initial
configurations can be scaled to several different densities, so
that an isomorph can be mapped out from simulations at only
one state point (although the quality of the linear fit generally
degrades as the density change increases).

Reasonable estimates of thermal averages of quantities,
such as the potential energy, virial, pressure, at the scaled
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densities can be made by averaging over the scaled config-
urations. Indeed, since these quantities are not invariant along
isomorphs in reduced units, nontrivial thermodynamic data
can be obtained this way. Even fluctuation-based quantities
like γ can be estimated from the scaled configurations. This is
the key to being able to determine thermodynamic quantities
along isomorphs without doing simulations except at the ref-
erence state point. Calculating thermodynamic quantities such
as virial and potential energy can still be costly, especially us-
ing ab initio methods, but two orders of magnitude less costly
than doing simulations at the scaled densities if configurations
are sampled every 100 time steps. It must be noted that the
scaled configurations cannot tell us how invariant structure
and dynamics actually are at any of the scaled densities. To
assess the degree of invariance conducting simulations at the
scaled densities is unavoidable.

C. Relevance of isomorphs to the melting curve

Paper IV of the initial series of papers developing the
isomorph theory [33] argues that the melting curve must be
parallel to liquid and solid isomorphs since an isomorph cross-
ing the melting curve contradicts the isomorph invariance
of structure. Obviously, if structure is invariant, the system
cannot at the same time undergo a phase transition. This argu-
ment assumes a very strong structural invariance applying to
configurations containing a mixture of two phases of different
densities.

For realistic systems, the preservation of ordering of Eq. (1)
is satisfied for most, but not all, pairs of physically relevant
configurations. Isomorph theory is only exact in systems with
potential-energy functions which are Euler homogeneous of
degree n (plus a constant). In this case the correlation coef-
ficient and the density-scaling exponent are R = 1 and γ =
n/3, respectively. Inverse power law (IPL) potential systems
[46] are an example of this: there the isomorph starting from
a point at melting simply follows the melting curve.

In more realistic systems the strong isomorph requirement
that structure and dynamics be invariant also for two-phase
configurations must be relaxed to the weaker condition that
isomorph invariance applies for single-phase configurations.
This is due to the fact that the density-scaling exponent gener-
ally depends on density, so identical density scaling of liquid
and crystal phases will scale their potential-energy surfaces by
different amounts. This means that the melting and freezing
lines are not exact isomorphs, though still close to isomorphs.
Isomorphs can be considered as excellent zeroth-order ap-
proximations of the melting and freezing lines. Indeed, several
phenomenological melting rules, including the Lindemann
melting criterion, can be understood as consequences of the
melting curve being close to an isomorph [33].

The method we use for constructing accurate melting
curves was described in Ref. [36] using the standard single-
component Lennard-Jones system as an example. The basic
idea is illustrated in Fig. 2. Two isomorphs, one liquid and
one solid, are generated from a state point at coexistence.
From quantities along these “reference isomorphs,” the melt-
ing pressure as well as the freezing and melting densities
can be calculated. The resulting expression for the melting

FIG. 2. Figure taken from Ref. [36] illustrating the idea behind
Eq. (8) (for the Lennard-Jones system). It shows isomorphs (blue)
generated from simulations at reference points (black dots) on the
freezing and melting curves. The method then gives a prescription
to interpolate the freezing and melting curves (red dashed) beyond
the reference point as a first-order expansion from the reference
isomorphs. This work, in contrast to the figure, takes a low ref-
erence temperature and generates melting curves towards higher
temperatures.

pressure is

Pm(T ) =
[(

U I
s − T

T 0
U 0

s

)
−

(
U I

l − T

T 0
U 0

l

)

+ NkBT ln
(
ρ̃I

s /ρ̃
I
l

) + T

T 0

(
W 0

l − W 0
s

)] 1(
V I

l − V I
s

) .

(8)

Here ρ̃I
l,s = ρI

l,s/ρ
0
l,s are the densities along the liquid (l) and

the solid (s) isomorph relative to their reference values, re-
spectively, and U I

l,s, V I
l,s, and W I

l,s are the potential energies,
volumes, and virials along the liquid and solid isomorphs at
the temperature T . The temperature dependence of U , V , and
ρ̃ has been suppressed for compactness in Eq. (8). Knowing
the deviation of the pressure between the melting curve and
the reference isomorph, the liquid density at freezing ( f ) and
solid density at melting (m) can be found using

ρ f ,m(T ) ∼= ρl,s(T )

(
1 + Pm(T ) − PI

l,s

KI
T l,s

)
, (9)

respectively, where KI
T l,s are the isothermal bulk moduli along

the liquid and the solid isomorphs, respectively. In an equilib-
rium simulation this quantity is calculated from the following
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fluctuation formula [51]:

KT = 1

V

(
NkBT + W + X − 〈(�W )2〉

kBT

)
. (10)

Here X is the average of the so-called hypervirial, which is de-
fined for individual configurations by ∂W/∂ ln ρ for a uniform
scaling of all coordinates [51]. Together, Eqs. (8) and (9) give
a prediction for the melting curve in the pressure-temperature
diagram, as well as for the melting and freezing curves in the
density-temperature diagram, using only quantities along the
isomorphs. Moreover, as described at the end of Sec. II B,
these quantities can be estimated without doing additional
simulations along the isomorphs. The hypervirial requires
additional calculations at nearby densities to calculate the
numerical derivative with respect to the density, however.

In Eqs. (8) and (9) the input quantities along the isomorphs
are to be evaluated at the same temperature. In Ref. [36]
the method was applied to the Lennard-Jones system where
analytical expressions for thermodynamic quantities along the
isomorphs exist [47]. This is not the case for the systems stud-
ied in this work. Additionally, the DIC finds temperature (and
other thermodynamic quantities) for a specific density. Thus,
the data along the two isomorphs are not directly available as
a function of temperature, which the method requires. This is
handled by fitting the temperature dependence of all DIC data
with polynomials. This procedure is a possible source of error,
and different orders of polynomials may be needed for the
different quantities. In particular, we find that the potential-
energy contribution to Eq. (8) poses the largest source of error
emerging from small differences between large numbers. The
other two terms remain fairly constant. Fourth-order polyno-
mials were used to fit the potential energy as a function of
temperature, while third-order polynomials were used for the
other quantities.

III. ISOMORPHS AND MELTING CURVE
OF EMT COPPER

A. Effective medium theory many-body potentials

To investigate the melting curve and its associated iso-
morphs in realistic models of metals, we have first carried
out simulations using the Roskilde University Molecular Dy-
namics (RUMD) [52] code for molecular dynamics simulations
on GPUs using the effective medium theory (EMT) potential
[53,54]. The EMT potential is a semiempirical interatomic
potential that aims to combine the accuracy of DFT with the
computational efficiency and transparency of a simple pair
potential. The basis of the EMT potential is the ansatz that the
energy of an atom inserted into an inhomogeneous electronic
medium is a function of the electron density at the atom’s
location, or more generally averaged over the volume of the
atom. This allows the calculation of atoms in inhomogeneous
environments to be determined from the immersion energy of
an atom in a uniform electron gas (atom-in-jellium model). It
has therefore been described as a “local density approximation
for atoms.” The validity of this ansatz was backed up with
extensive DFT calculations in the 1980s [55,56]. From these
results explicit parametrizations of the embedding energy for
many elements have been determined. To make an interatomic

potential based on the ansatz, the further assumption is made
that the effective electron density into which a given atom is
embedded may be calculated as a superposition of the electron
density tails from the neighboring atoms [53,54]. Corrections
to this picture may be implemented using a simple pair poten-
tial, and the resulting interatomic potential is efficient, using
simple functional forms (mostly exponentials) and relatively
few parameters.

This is in contrast to well-known embedded-atom method
(EAM) potentials [57–60] whose overall structure and many-
body nature is similar, but which tend to be based on heavy
fitting to, e.g., experimental structural data, and which do not
lend themselves as much to obtaining physical insight. One
feature of the EMT potential is that it gives reasonably accu-
rate values for the isomorph-theory density-scaling parameter
γ when compared to DFT calculations, a quantity to which the
potentials were not fitted [61]. A practical advantage of EMT’s
simplicity compared to EAM is its ease of implementation
in RUMD, but it also allows in principle the possibility of
an analytical investigation of the dependence of γ on the
potential parameters and on the density.

B. Isomorphs in EMT-Cu

The starting point for these calculations is a known point
on the melting curve to serve as the reference state point. This
was determined using the interface pinning method [28] at
2008 K. This method returns the pressure for a given temper-
ature on the melting curve, along with the volumes (densities)
of each phase. Single-phase NV T simulations were then run
at those densities and that temperature to generate the two iso-
morphs using the DIC. Note that the interface-pinning method
requires simulations of a so-called NPzT ensemble, which
maintains a fixed pressure in one direction (the z direction)
and fixed area in the remaining two. The NV T simulations
in RUMD were realized using the Nosé-Hoover thermostat
[62,63] while the interface pinning simulations employed
Langevin dynamics [51]. For the solid phase a simulation box
with 2048 particles was simulated, which corresponds to an
fcc crystal with 8 × 8 × 8 cubic unit cells. The same number
of particles was used for the liquid phase. The isomorphs
were determined using the DIC, increasing density by up to
23%. Figure 3 shows the mapped liquid and crystal isomorph
for Cu, as well as the state points that were simulated on
the isomorph of each phase. For comparison, isochores, and
isotherms sharing, respectively, the density or the temperature
of the middle state point are also simulated for each phase as
indicated.

An indication of the degree of isomorphism can be ob-
tained by using the scaled configurations to estimate the
correlation coefficient R and density-scaling exponent γ at the
points along the isomorph. These, along with the temperatures
obtained from the DIC, are plotted versus the density in Fig. 4.
The density-scaling exponent γ decreases monotonically with
increasing density and temperature along the isomorph. This
behavior is consistent with previous experience from the EMT
metals [61] and seems to be a general feature of metals [64].
Consequences of this density dependence of γ for melting
will be discussed below. A consistency check, first used in
Ref. [61], can be done by fitting the γ values to the function
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FIG. 3. Relevant part of the Cu phase diagram marking the points
of interest. The solid lines denote isomorphs generated from the
reference state points given by the black circles (lower left corner).
Additional simulations were carried out at the state points marked by
open circles. The points connected by the dotted and dashed lines are
on the same isotherm and isochore. All isocurves are given in blue
for the liquid phase and in red for the solid phase. The colors of the
circles correspond to the colors used in Figs. 5 and 6 for structure
and dynamics data at the respective state points.

γ (ρ) = a + b/ρn. This function can be integrated analytically
and gives an alternative estimate of the temperature along
the isomorph. The middle panel of the figure shows that this
estimate agrees well with the temperatures obtained from
the DIC. In the bottom panel the correlation coefficients are
plotted. They all exceed 0.97, indicating a strong degree of
isomorphism.

To explicitly demonstrate the quality of the isomorphs we
have run simulations at the state points determined by the DIC
along the solid and liquid isomorphs. Figures 5 and 6 show
structural and dynamical data for Cu in the solid and liquid
phases, respectively. Similar data for the solid phase were
presented in Ref. [61]. Each figure shows radial distribution
function (RDF) and mean-squared displacement (MSD) data
expressed in reduced units for the isomorphs and, for compar-
ison, also for the isotherms and isochores indicated in Fig. 3
by the corresponding colors. The plots for the state points on
the isomorphs are well on top of each other, while they show
noticeable variation for the state points along an isochore.
The RDFs of state points along the solid isotherm are also
very similar to each other, reflecting simply the validity of the
harmonic approximation for crystals. Thermodynamic data
for the solid and liquid Cu isomorphs are listed in Tables II
and III in Appendix A.

C. Melting curve for EMT-Cu

High-pressure experimental data for the Cu melting curve
has been reported by, for example, Japel et al. [65] and Er-
randonea [13,14]. Corresponding computational studies have
used both ab initio methods [66] and empirical potentials
[67–69]. There is broad agreement between the experimen-
tal and computational methods, which is consistent with the
electronic structure being stable due to the filled d bands
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FIG. 4. DIC self-consistency check for EMT-Cu. Open circles
represent data for the isomorphs from the DIC, red for the solid, and
blue for the liquid. The dashed line in the top panel was obtained
from fitting to the DIC points. The parameter for the fitted expression
for γ (ρ ) are a = 1.349, b = 0.000 652 8, n = 3.249 for the solid and
a = 1.409, b = 0.000 342 8, n = 3.478 for the liquid isomorph. The
resulting integrated isomorph is given by the solid line in the middle
panel. The bottom panel shows the correlation coefficients along both
isomorphs.

[65]. Recent computational studies have, however, indicated
that a bcc phase appears at sufficiently high pressures and
temperatures [38,39]. Our calculated melting pressure and
resulting freezing and melting densities are shown in Fig. 7.
For comparison, coexistence state points for the same system
determined using interface pinning are also included. The
melting pressure predicted from the isomorph-based method
agrees well with the interface points, although not as perfectly
as in the Lennard-Jones case of Ref. [36], where analytic
expressions for potential energy, virial, and temperature along
isomorphs are available. A small systematic shift can be ob-
served with the calculated melting pressure being slightly
below the interface pinning results; the same applies also for
the predicted densities of the liquid at freezing and the solid
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FIG. 5. RDF and MSD along various isocurves in the solid phase
of EMT-Cu (Fig. 3). The RDF has been plotted against the reduced
pair distance r̃ ≡ ρ1/3r, while the MSD has been put into reduced
form by multiplying with ρ2/3 and plotted against the reduced time
t̃ ≡ t/(ρ−1/3

√
m/kBT ). Each subfigure contains multiple curves, one

for each state point on the isocurve in question. The colors indicate
the state point according to Fig. 3. Both structure and dynamics are
invariant to a good approximation along the isomorph.

at melting. Nevertheless, Fig. 7 demonstrates that the method
works well also for systems for which no analytic expressions
are available for the isomorphs or for how thermodynamic
quantities vary along them. The melting curve shows good
qualitative agreement with the experimental data of Erran-
donea [14]. Quantitatively, the EMT curve is around 10%
higher in temperature, compared to the experimental data.
This deviation largely stems from the EMT model of Cu,
rather than from isomorph theory. Our point is that, given any
computational model, such as EMT or DFT, isomorph theory
can generate accurate melting curves at considerably reduced
computational cost.

All data required to produce the melting and freezing line
predictions can be obtained from simulations at only the
reference state point (T = 2008 K). Combining the isomorph-
based prediction method, Eqs. (8) and (9), with the DIC thus
makes it possible to predict the melting and freezing curves in
systems where conventionally used methods are too compu-
tationally expensive. In the following section this is tested for
DFT simulations of aluminum.

FIG. 6. RDF and MSD along isocurves in the liquid phase of
EMT-Cu. Details are as in Fig. 5. Both structure and dynamics are
invariant to a good approximation along the isomorph.

IV. ISOMORPHS AND MELTING CURVE FOR DFT
ALUMINUM

We now apply the melting curve method expressed through
Eqs. (8) and (9) to data from density functional theory simula-
tions carried out using the Vienna ab initio simulation package
(VASP) [70–72].

A. DFT simulations of isomorphs

First-principles or ab initio methods try to retain materials
properties directly from the Schrödinger equation, involving
only the physical constants as experimental input. This is
very hard in practice. The computational complexity of con-
ventional numerical solution techniques scales exponentially
with system size, making calculations of more than a handful
of electrons intractable even on the most powerful comput-
ing facilities. State-of-the-art ab initio calculations employ
a number of approximations that hold for a wide range of
temperatures and densities: (i) The Born-Oppenheimer ap-
proximation, which separates the nuclear from the electronic
quantum degrees of freedom due to the nuclei being much
heavier than the electrons. Typical timescales of the nucleus
and the electron dynamics are well separated and the inter-
actions between nuclei and electrons are well described by
mean-field interactions. Expectation values of observables of
one system enter only as parameters for the Hamiltonian of
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FIG. 7. Comparison of the predicted melting curves (solid black
lines) with coexistence state points determined using interface pin-
ning (open circles) for EMT-Cu. The melting curve is predicted
exclusively from simulations at the reference state point, one in
the liquid and one in the solid phase. The reference state point is
marked by the full circle. (a) Shows the pressures along the solid and
liquid isomorphs generated from the reference point with the melting
pressure. (b) Shows the same in the (ρ, T ) diagram. For comparison
the experimental melting curve data of Errandonea [14] are shown as
the orange dashed line.

the respective other system. (ii) The adiabatic approximation,
assuming that the relaxation of the electrons into their thermal
equilibrium is so fast that only the positions of the nuclei enter
the electronic Hamiltonian as parameters but not their velocity
or their acceleration. (iii) The average spacing between nuclei
is large compared to their de Broglie wavelength and one can
treat the dynamics of the nuclei classically.

Under these assumptions, the nuclear problem reduces
to the classical dynamics of point masses in an effective
potential-energy landscape U (R) that is given by the free
energy of the electrons in the setting, where the nuclei
are fixed at the positions R. The electronic free energy
is a functional of the electronic equilibrium density only,
a much simpler object than the entire electronic equilib-
rium density matrix [73]. Modern density functional theory
implementations employ the Kohn-Sham framework to re-
trieve accurate kinetic energy contributions and rely on
density- and density-gradient-dependent fits of the remain-
ing so-called exchange-correlation contribution, retrieved
from high-accuracy calculations of only a small number of

electrons [74]. We approximate the temperature-dependent
free-energy functional by applying Fermi smearing to Kohn-
Sham orbitals found from a zero-temperature ground-state
density functional [70]. To this end, we set the Fermi smear-
ing energy to kBT . Note that we do not use smearing to
accelerate the convergence of the orbital solver but rather
to approximate the free energy of electrons at nonzero
temperature.

The results of this work have been obtained using the
standard approximation by Perdew-Burke-Ernzerhof (PBE)
of the exchange-correlation functional [75] implemented in
VASP using the projector augmented wave (PAW) method [76].
Aluminum has only three valence electrons, which enables
an efficient simulation using a frozen-core-type pseudopo-
tential. This means that only the outer shell electrons are
treated explicitly while the inner electrons are considered
frozen. To verify the validity of this approximation under
the extraordinarily high densities considered in this work,
energy and virial of several hundred uncorrelated configu-
rations of the MD trajectories were also computed with 11
valence electrons per atom, freezing only the innermost two
electrons. No relevant difference was found between cal-
culations with 3 and 11 valence electrons per atom. The
Brillouin zone was sampled at the � point (0, 0, 0). The initial
choice for the kinetic energy cutoff for the plane waves was
220 eV. This value applies to the reference state point; in
order to avoid discontinuities, the number of plane waves is
kept constant when scaling configurations. This means that
for the density changes of the DIC, the energy cutoff is
scaled as

Ecut (ρ) = Ecut (ρi )

(
ρ

ρi

)2/3

, (11)

where ρi and Ecut (ρi ) are, respectively, the initial density and
the energy cutoff chosen for that density. The ρ2/3 dependence
is due to the plane-wave energy being proportional to wave
number squared, while the wave number of any given plane
wave scales inversely with the linear size of the box, and thus
as ρ1/3. The simulation box for Al contained 108 atoms for
each phase. This number is determined by the crystal phase
having an fcc structure with 108 atoms for a crystal size of 3 ×
3 × 3 cubic unit cells. The NV T molecular dynamics (MD)
simulations were carried out using a Langevin thermostat.

Each simulation run consists of 50 000 MD steps with
a time step of 2 fs. The first 20 000 steps ensure that the
system reaches equilibrium in the respective phase. From the
remaining 30 000 steps every 100th configuration is sampled
for the DIC scaling procedure. The velocity autocorrela-
tion functions indicate sufficient statistical independence after
100 MD steps. For determining the isomorphs, new densi-
ties were obtained from scaling the initial liquid and solid
configurations increasing their density by the following fac-
tors: 1.1, 1.2, . . . , 1.9, 2.0. To obtain data on structure and
dynamics for testing isomorph invariance, we have selected
the relative densities 1.3, 1.6, and 1.9 and simulated at the
temperature predicted from the DIC for the given density.
These simulations also consisted of 50 000 steps with a time
step of 2 fs. Configurations from the last 20 000 steps of the
simulation were used to calculate the radial distribution and
the velocity autocorrelation functions. In addition to the scal-
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TABLE I. Temperature, pressure, and density of the isomorphic state points simulated for Al with the color names corresponding to the
colors in Figs. 10 and 11. The top half of the table is for the liquid isomorph, the bottom is for the solid isomorph. The last four columns give
the γ and R values as predicted from the DIC versus the values measured from simulation.

ρ/ρ0 Color T (K) P (GPa) ρ (Å−3) γDIC RDIC γSim RSim

1.0 (l) Black 2265 27.82 0.0688 2.616 0.9679
1.3 Red 4090 94.92 0.0894 2.010 0.9786 1.935 0.9846
1.6 Green 5912 198.7 0.1101 1.687 0.9760 1.558 0.9747
1.9 Blue 7644 340.5 0.1307 1.480 0.9663 1.338 0.9653
1.0 (s) Black 2265 27.67 0.0714 2.591 0.9896
1.3 Red 4015 97.96 0.0934 1.851 0.9923 1.843 0.9916
1.6 Green 5626 210.0 0.1150 1.458 0.9834 1.464 0.9852
1.9 Blue 7022 365.3 0.1365 1.198 0.9596 1.169 0.9526

ing of configurations necessary for the DIC, we also carried
out much smaller scaling around the specified densities to
determine the hypervirial as a numerical derivative [the hyper-
virial is necessary to determine the isothermal bulk modulus in
Eq. (10)].

B. Reference state point for Al isomorphs

As for Cu, a state point at solid-liquid coexistence is chosen
as reference. We use literature data for the melting curve
from experiments and other DFT simulations, both to obtain a
reference point and to validate our predictions. The reference
point for Al was the experimentally determined coexistence
point at temperature 2265 K and pressure 27.5 GPa [12,77].
Interface pinning DFT calculations for Al are beyond the
scope of this work and have not been conducted. DFT calcu-
lations scale with system size as O(N3). Thus, the two-phase
calculation in the interface pinning method with 216 atoms is
more than 8 times slower than the single-phase calculations
with 108 atoms used in the DIC. Furthermore, noncubic two-
phase calculations exhibit strong pressure anisotropies due to
different length scales of the periodic boundary conditions,
to which the conduction electrons of metals are sensitive
[78,79]. The densities of the two phases at this reference
state point were not reported in Refs. [12,77]; these are, how-
ever, needed for the DIC calculations in the NV T ensemble.
The corresponding densities were estimated by simulating a
series of different box sizes to find the box size at which
the pressure matched the desired pressure. The resulting
liquid density was 0.0688 Å−3 and the crystal density was
0.0714 Å−3 (see also Table I). At these densities the simu-
lated average pressure matched the desired pressure to within
0.5–0.6 GPa.

From the reference state point a solid and a liquid isomorph
were generated. For comparison, points along an isotherm and
an isochore in each phase were studied as well. The part of
the phase diagram indicating these state points is shown in
Fig. 8. The lines represent the isomorphs found from applying
the DIC to data from a simulation at the reference points
marked by the solid dots. The other points noted in the fig-
ure correspond to state points where additional simulations
were carried out. Including the reference points, this means
that for each phase a total of four isomorphic state points
and three state points that are isothermal or isochoric to state
points along the isomorph were simulated. In the figure, iso-

morphic state points are referred to by their label according
to the change in density relative to the reference point. Even
though the initial temperatures are the same for the liquid and
solid phases and the corresponding densities were scaled by
the same factors, the obtained temperatures are different, with
the solid temperature being lower than the liquid temperature
for the same density-scaling factor. This is a consequence of
the scaling exponent γ decreasing with increasing density,
as seen in Fig. 9(a), and the solid having a higher initial
density.

C. Isomorph invariance in Al

Figure 9 shows the scaling exponent γ , the DIC-generated
isomorphs in the density-temperature diagram, and the virial
potential-energy correlation coefficient R. We emphasize that
R and γ were not obtained by simulating at the isomorphic
state points, but purely by scaling sampled configurations

FIG. 8. Relevant part of the Al phase diagram marking all points
studied by DFT. The solid lines denote isomorphs generated from the
reference points (black circles). Additional simulations were carried
out at the state points marked by filled circles. The points connected
by the dotted and dashed lines are on the same isotherm and isochore,
respectively. Iso-curves on the liquid side of the phase diagram are
given in blue and in red for the solid side. State points along the
isomorphs are labeled according to the relative change with respect to
the reference point density. The colors of the filled circles correspond
to the colors used in Figs. 10 and 11 for structure and dynamics data
at the respective state points.
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FIG. 9. DIC self-consistency check for Al. Open circles repre-
sent data for the isomorphs from DIC, red for the solid and blue
for the liquid. The dashed line in the top panel was obtained from
fitting to the DIC points. The parameters for the fitted expression
for γ (ρ ) are a = 0.3422, b = 0.043 38, n = 1.498 for the solid and
a = 0.8181, b = 0.028 26, n = 1.551 for the liquid isomorph. The
resulting integrated isomorphs are given by the solid lines in the
middle panel. The bottom panel shows the correlation coefficient for
both isomorphs obtained from the DIC.

from the reference simulation, computing their energies and
virials, and then applying Eqs. (3) and (4), respectively. As
in the case of EMT-Cu, γ decreases monotonically with in-
creasing pressure and temperature along the isomorphs. For
all state points along the isomorphs the correlation coefficient
is well above the R > 0.9 threshold defining an R-simple
system. This means that good isomorph invariance in this
part of the phase diagram can be expected. We find the same
behavior as previously seen for other metallic systems [61,80]
of R decreasing slightly as density and temperature increase.
Given that γ decreases substantially and presumably reaches
zero, R must also eventually decrease since the correlation
necessarily goes to zero when γ does, as seen from Eqs. (3)
and (4). The Cu data do not show this decrease in Fig. 4, but
the density range there is smaller; a decrease may be expected
to occur for Cu at higher densities. R also begins to decrease

at low density, where the configurational part of the pressure
approaches zero, and strong correlation typically breaks down
[81].

We show in Fig. 9 the same consistency check used for
Cu, now applied to Al. Since the DIC is not exact and since
the reference point for the DIC and the fitting is the lowest
density-temperature state point, small deviations between the
fitted and the DIC state points can be expected at the high-
density and high-temperature end. The deviation between the
mapped and the integrated isomorphs is indeed small, again
suggesting that good isomorph invariance can be expected.
The overall similarity in the behavior of γ and R between DFT
and EMT provides further evidence that the EMT potential, al-
though simple compared to other many-body potentials, gives
a good overall description of metallic interactions.

A direct way to check for isomorph invariance is to look
at structure and dynamics studied by means of RDF and the
velocity autocorrelation function (VACF), respectively (we
chose the VACF rather than the MSD used above for Cu
due to the more limited time range accessible in ab initio
simulations). Additional simulations at the state points from
the DIC were carried out at the selected state points noted
in Fig. 8. The resulting RDFs and VACFs along the various
isocurves are shown in Fig. 10 for the solid side of the phase
diagram and in Fig. 11 for the liquid side.

Panels (a) and (b) of both figures show the structure and
dynamics along the respective isomorphs. For comparison,
structure and dynamics along an isochore and an isotherm are
included in the middle [(c) and (d)] and bottom [(e) and (f)]
panels, respectively. The curves along the isomorph shown
in the top panels are almost identical. This invariance is not
perfect; see, for example, the second minimum in Fig. 10(b)
and the first minimum of the VACF in Fig. 11(b), but there
is a clear contrast between the isomorphs on one hand and the
isochores and isotherms on the other. Values for pressure, tem-
perature, and density along the isomorphs are given Table I.
The γ and R values determined by actually performing MD
simulations at the state points in question are also given. These
can be compared to the DIC values determined by scaling con-
figurations sampled at the reference state point simulations.
They show good agreement with each other. From that and
from the agreement of the RDFs and VACFs we conclude the
presence of isomorphic state points.

D. Al melting curve

The melting curve of Al was measured by Jayaraman in
1963 up to 3 GPa [82], and in the range 12–80 GPa by Boehler
and Ross [77] and Hänström and Lazor [12]. More recent
data from Errandonea has filled the gap up to 12 GPa [13].
Computational studies have involved both ab initio methods
[83,84] and empirical potentials [69]. Recent DFT calcula-
tions by Hong and van de Walle [43] have extended the
melting curve to unusually large pressures and temperatures,
and confirmed the existence of a maximum melting tempera-
ture around 3500 GPa and 20 000 K.

The limited simulation cell size accessible to DFT leads
to non-negligible fluctuations of thermodynamic quantities,
in particular for the pressure. The predicted melting pressure
according to Eq. (8) is very sensitive to deviations in the
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FIG. 10. RDF and VACF along iso-lines in the solid side of the
phase diagram of Al. Each panel shows the RDF on the left and
VACF on the right for the same state points (values are given in
Table I). The state points for the top row are along the isomorph. State
points shown in the middle and bottom panel are along an isochore
and isotherm, respectively.

virial at the reference temperature. A significant offset at the
starting point is acquired if the average pressures of the liquid
and the solid phases do not exactly match the coexistence
pressure. Even though the NV T simulation cells for the solid
and the liquid at the reference point are chosen to be at the
same pressure, deviation between set and measured pressure
of about 0.5 GPa are to be expected in practice. This deviation
is amplified by Eq. (8), resulting in an offset of approximately
16.5 GPa. To compensate for this we have corrected the virial
such that the pressures at the reference point both equal the
desired pressure (Appendix B).

The resulting (P, T ) phase diagram is shown in Fig. 12.
The phase diagram also includes coexistence state points
determined by experimental methods [12,77] (red, open cir-
cles) and by other simulation techniques using DFT [43,83]
(orange symbols). The DFT results depicted by the orange
triangles in Fig. 12 are obtained from PBE calculations.

The reference point for the isomorphs is marked by the
black circle indicated by the arrow. The points along the
isomorphs found using the DIC are marked by the colored
crosses with the dashed line given by the polynomial fitted to
the data. The DIC state points are determined by scaling the
initial density by the factors listed in Sec. IV A.

FIG. 11. RDF and VACF along iso-lines in the liquid side of the
Al phase diagram, similar to the presentation of the solid side in
Figure 10. Each panel shows the RDF on the left and VACF on the
right for the same state points.

FIG. 12. (P, T ) phase diagram of Al. The experimental point
marked the black circle indicated by the arrow was used as ref-
erence point for tracing out the isomorphs. The predicted melting
pressure is given by the solid black line. The experimental points
are taken from Ref. [12] which includes points from Ref. [77], both
determining melting in a diamond anvil cell (DAC). The DFT points
are taken from Refs. [43] (small cell coexistence method) and [83]
(HUM/hysteresis).
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The solid isomorph lies to the right of the liquid in the
(P, T ) phase diagram, that is, the solid isomorph is at at a
higher pressure than the liquid at the same temperature. This
was seen also in the EMT-Cu results in Fig. 7 (note that
there pressure is the vertical axis), and can be rationalized
by the following argument: The solid has a larger density
and correspondingly a lower γ than the liquid at the same
temperature and pressure. For a given common temperature
increase the solid therefore must undergo a larger fractional
density increase. Assuming the bulk modulus of the solid is
at least as large as that of the liquid, this implies a greater
pressure increase.

The melting curve calculated from the two isomorphs is
given by the solid black line in Fig. 12. The calculated melting
pressure agrees well with both the experimental and the DFT
points. The latter, from Refs. [83] and [43], refer to the fcc
crystal phase. In fact, the liquid-fcc melting line continues
until the liquid-fcc-bcc triple point, predicted at 5650 K and
195 GPa by ab initio DFT calculations [85]. Along the liquid-
fcc melting line the deviation between Ref. [85] and this work
is less than 5%. Our predictions are closer to the data of
Ref. [43] than to the experimental data, which is perhaps not
surprising since the former were also based on DFT using
the same functional as we did, and indeed the same software.
The other DFT points from Ref. [83] are based on the hys-
teresis method, which combines data from the heat until it
melts (HUM) method with the opposite method, cool until it
freezes, to compensate for well-known overestimation by the
the HUM method alone due to superheating effects [86,87].
The resulting combined melting curve is much better fit than
HUM alone, but often still somewhat too high [83].

Figure 13 shows the densities calculated using Eq. (9)
together with the densities along the reference isomorphs.
Unfortunately, there are no densities reported corresponding
to the pressures in the DFT calculations of Refs. [83] and
[43], shown in Fig. 12. Reference [12] reports only a single
volume for each temperature, which was translated to a den-
sity to obtain the red circles shown in Fig. 13 (it is not clear
from Ref. [12] whether the reported volume is for the liquid
or the solid phase, but from Fig. 13, we presume that they
correspond to the solid phase).

V. IMPLICATIONS FOR THE FATE OF THE MELTING
CURVE AT HIGH PRESSURES

In this section we discuss a potential consequence of the
fact that the melting curve approximately follows an isomorph
whose slope, given essentially by the density-scaling expo-
nent γ , decreases substantially with increasing density. The
question of how low γ can become in the high-density limit
encourages us to speculate about what isomorph theory can
tell about the fate of the melting curve at very high pressures.
In particular, inspired by recent results of Hong and van de
Walle [43] we discuss when the the phenomenon known as
reentrant melting might occur.

When the melting temperature as a function of pressure
has a maximum, increasing pressure at a fixed temperature
lower than the maximum causes the material to undergo a
sequence of phases liquid → crystal → liquid, i.e., the sys-
tem reenters the liquid phase. This phenomenon has been

FIG. 13. (ρ, T ) Phase diagram of Al. Note that the axes are
switched compared to the usual textbook way of plotting (ρ, T ) dia-
grams. This is because the method calculates densities as a function
of temperature. The calculated melting pressure shown in Fig. 12
can be translated into the densities at which the liquid freezes and
the solid melts via Eq. (9). The resulting densities are given by the
solid black lines. The dashed lines mark the associated isomorphs.
Reference [12] reported only a single volume for each temperature,
not stating for which phase. They are shown as densities here (red
circles).

speculated on since the start of the last century [88] and has
come to be termed reentrant melting. Reentrant phenomena
have been much studied in liquid crystals [89] and among
metals. Sodium is one case known to undergo reentrant melt-
ing, observed experimentally in 2005 [90] and later also in
simulation [91,92]. Reentrant melting has also been seen in
simple model systems such as that based on the Gaussian core
pair potential [93,94].

A. Approach of Hong and van de Walle

Hong and van de Walle [43] have recently suggested reen-
trant melting to be far more common among metals than
previously thought. The reason for this not being previously
recognized is simply that the temperature maximum occurs at
much higher pressures than could be studied in the laboratory
so far. Based on DFT simulations of coexistence, however,
they find reentrant melting not just in Na but also in other
metals, though typically at pressures well above what can be
achieved in experiments. To locate the reentrant point, they
suggest a quick method to screen materials, thus avoiding the
computationally demanding work of accurately determining
the whole melting curve. The method is surprisingly simple
and inadvertently related to isomorph theory as shown below.

According to the Clausius-Clapeyron relation, the slope of
the melting curve is given by

dP

dTm
= �H

Tm�V
(12)

in which �H is the specific heat of fusion and �V = Vl − Vs

is the difference in specific volume. The melting slope be-
comes negative whenever �V does, i.e., when Vs > Vl . The
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screening method of Hong and van de Walle relies on finding
the pressure at which Vs becomes larger than Vl , by taking a
randomly selected snapshot from the trajectory of simulations
of a solid and one from a liquid simulation. Each snapshot
represents the corresponding phase. The snapshots are then
compressed by scaling all atomic position vectors uniformly.
From this the pressure-volume relation is estimated for each
phase, and the pressure where the sign of �V changes can
be found from comparison. The method provides a well-
informed guess of where a melting curve maximum can be
expected, if at all. Hong and van de Walle [43] confirmed
by simulations of Na, Mg, and Al that the maximum of the
melting temperature Tm coincides with the estimate from the
screening method. For the case of Al, the reentrant point was
located at the rather extreme conditions of around 3500 GPa
and 20 000 K.

The technique of uniformly scaling configurations to esti-
mate high-pressure thermodynamic properties is very similar
in spirit to isomorph theory, in particular to the direct iso-
morph check (DIC) used in the previous sections, and can
be said to implicitly assume that the freezing and melting
lines are isomorphs of the respective phases. Scaling a single
configuration can only give a rough estimate of the pressure,
not of the temperature at the higher density, while the DIC,
by sampling several configurations, enables an estimate of
the corresponding temperature as well. Note, however, that a
recent paper described a force-based method for tracing out
an isomorph based on a single configuration [95].

B. Approach based on isomorph theory and the Lindemann
criterion

A possible method for a similarly educated guess derived
from isomorph theory directly could be based on the density-
scaling exponent γ . The connection between γ going to zero
and the maximum of the melting is more than a hand-waving
argument of the slope flattening out. In the Lindemann law
[19,20] for melting, the melting curve is described by the
function

d lnTm

dP
= 2

(
γG,m − 1

3

)
KT,m

, (13)

where KT,m is the isothermal bulk modulus of the solid at
melting and γG,m = αP,mKT,mVm/ρcV,m is the thermodynamic
Grüneisen parameter at melting, here given in terms of KT , the
isobaric thermal expansion coefficient αP, and the isochoric
heat capacity per particle cV . The Lindemann law is often
used to extrapolate the melting curve to high pressures from
low-pressure data. Typical values for γG in metals at low
pressure are around 2 and higher [96], thus yielding a melting
curve with a positive slope. Writing this law in terms of the
density rather than pressure gives

d lnTm

d ln ρ
= 2

(
γG,m − 1

3

)
. (14)

A simple relation between the Grüneisen parameter γG and the
scaling exponent γ from isomorph theory was derived some
time ago for spherical particles [32,46]. Using the Dulong-
Petit approximation for the specific heat, the relation is

γ = 2
(
γG − 1

3

)
. (15)

Using this the Lindemann melting law becomes simply

d lnTm

d lnρ
= γ (ρ), (16)

which is identical to the equation for an isomorph, Eq. (5). In
writing this equation we have removed the subscript m refer-
ring explicitly to the melting line from γ and assumed that
γ depends only on ρ. Thus, under the Dulong-Petit approxi-
mation the Lindemann melting law is equivalent to the melting
line following a (crystal) isomorph. From Eqs. (13) and (16) it
follows that the slope of the melting curve becomes negative
when γG < 1

3 or equivalently γ < 0. This cannot be taken as
a strict criterion, however, because (1) the melting line does
not strictly follow an isomorph and (2) using the isomorph
as the basis for a perturbative approach as we have done is
unlikely to work as γ approaches zero; this is because the
virial potential-energy correlation coefficient R goes to zero
when γ does, meaning that isomorph theory is not expected
to work in this region.

What is the physical origin of reentrant melting in met-
als? The authors of Ref. [43] explain the origin of reentrant
melting as a faster softening of interatomic interactions in
the liquid phase than in the solid. The decrease of γ also
corresponds to a softening of interactions in the sense of an
effective IPL [32] whose exponent decreases: the interactions
become effectively more long ranged. Indeed, a value of zero
for γ formally implies interactions independent of distance,
which would imply that there is no energy cost to melting:
Increasing pressure of the coexisting phases normally requires
an increase in temperature so that the entropic term in the free
energy can continue to balance the enthalpic term, assuming
the entropy of fusion does not change much. If the energy cost
of melting vanishes upon increasing pressure, then this is no
longer necessary and no increase in temperature is needed to
maintain coexistence.

The softening of the effective interatomic potential can
give rise to other complications for our isomorph-based
method, in particular a change of crystal phase, since smaller
IPL exponents typically favor more open crystal structures
such as bcc [32]. In fact, Na, the metallic case for which
reentrant melting has been observed experimentally, has a
bcc structure under ambient conditions; this is related to
sodium’s fairly low value of γ ∼ 1.9 (liquid phase near the
triple point [32]), meaning presumably that lower pressures
are required to reach γ = 0. Simulations on Na show that
the correlation coefficient R is also low in the relevant range
[79], and consequently the isomorphs are of poor quality in
regard to having approximately invariant structure and dy-
namics. Nevertheless, the isomorph-predicted melting curve
is close to existing DFT results and largely consistent with
the experimental curve [79]. For materials such as Al and Cu,
which have larger γ and close-packed structures at ambient
pressure, a phase change to bcc [43,85] is indicated by the
lowering of γ and the consequent softening of effective inter-
actions with increasing density. Thus, structure is inherently
not invariant beyond the phase change, precluding an accurate
isomoprh-based prediction of the melting line all the way up
to γ → 0 starting from the close-packed phase. Still, locating
the vanishing of γ ignoring a possible bcc transition could
be an indicator of the possibility of reentrant melting. We
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note that the fcc-bcc phase transition for Al has recently been
identified at pressures at around 200 GPa [85].

C. Insights from a comparison with the EXP pair-potential
system

To shed further light on the possibility of reentrant melting,
we consider a simple model system which exhibits similar
behavior to metals regarding the density dependence of γ .
This is the purely repulsive pair potential given by a single
decaying exponential, denoted EXP:

vEXP(r) = ε e−r/σ . (17)

The EXP pair-potential model describes certain aspects of
metals surprisingly well. This can be traced back to the fact
that the low-density limit of the Yukawa (screened Coulomb)
potential, an important ingredient in most models for metals
[97], is well described by the EXP potential [98,99]. The
connection can also be rationalized by noticing that the EMT
description of metals involves an exponential function in sev-
eral places [54]. What is particularly relevant in the present
context is that the density dependence of γ is similar to
what is observed for metals, exhibiting substantial decay, in
fact vanishing at sufficiently high density [99]. This density
dependence is exhibited both by EMT and DFT metals. The
EMT description contains the most important aspects of the
quantum-mechanical description of metals at high densities,
while at the same time having an analytical connection to the
simple EXP system. An analytic relation between γ and the
parameters of the EMT potential has not yet been found, but
the latter presumably inherits its density dependence from the
EXP pair-potential system, which is thus somehow the root of
the behavior in DFT (and presumably real) metals.

Considering the EXP system as a prototype for metals
is consistent with the hypothesis of Ref. [43] that reentrant
melting applies for all metals; the melting curve for the EXP
potential indeed has a maximum temperature [99]. In fact,
γEXP goes to zero almost exactly where the maximum of Tm

is reached [98]. A criterion based on fitting and interpolating
the zero crossing of γ could therefore be used similarly to the
volume screening method to outline the region where the max-
imum of the melting curve should be expected. Note, however,
that we do not claim one can extrapolate using isomorphs to
accurately locate the reentrant point because the theory breaks
down as γ vanishes. A possible advantage over the volume
screening method would be that using the γ interpolation
method can be done from scaling of only one phase rather
than both, although it uses information from more than one
configuration.

Decreasing γ with increasing density and the appearance
of the bcc phase at high pressures are both consistent with
metallic interactions being well described by the EXP pair
potential. The EXP system also undergoes an fcc-bcc phase
transition and eventually reaches reentrant melting [99].
Conversely, if the EXP system is indeed a good model for
metallic interactions, the proposition of Hong and van de
Walle follows that reentrant melting is widespread among
metals, possibly universal.

D. Other approaches

We round off this section with some discussion of re-
lated approaches. Clearly, knowing the density dependence
of either the density-scaling exponent γ or the Gruneisen
parameter γG is relevant to determining the melting curve. In
the literature the Gruneisen parameter is the more commonly
studied quantity. For example, Coung and Phan [100] have
used analytical expressions based on atomistic modeling and
experimental data to estimate the melting curve of iron up
to 350 GPa. An important ingredient of their approach is an
expression for the density dependence of the Gruneisen pa-
rameter. They used a simple power-law form, similar to what
we have used in our consistency check of the DIC, though
they noted that other forms are also found in the literature,
for example, a constant plus two power laws [101]. Another
recent example of work connecting the density dependence of
the Gruneisen parameter to melting curves for metals is by
Roy and Sarker [102]. These authors find using DFT calcu-
lations of the crystal in the harmonic approximation that for
Pd, Rh, Pt, and Ir, both the vibrational and thermal Gruneisen
parameters exhibit a density dependence described by

ρ

γG
= a + ρ. (18)

That is, the ratio of density to the Gruneisen parameter is a lin-
ear function of density with slope unity. Their data cover large
density changes corresponding to pressures up to 350 GPa
and the quality of their linear fits is excellent. This result
(at least for the vibrational version of γG) is equivalent to
the Debye frequency also being a linear function of density.
It also implies, though the authors do not discuss it, that γG

levels out at value unity in their high-density limit, which by
Eq. (15) corresponds to a limiting value of γ → 4

3 . They note
that experimental data seem to give a somewhat higher slope,
around 1.3, corresponding to a limiting value γG →∼ 0.77
and γ →∼ 0.87. Our data cannot be used to infer a limiting
value of γ , but it appears that it will quite likely continue to
values lower than 4

3 at least (Fig. 9). Roy and Sarkar’s result of
a limiting value of γG greater than 1

3 precludes the possibility
of reentrant melting, assuming that Eq. (13) describes the
melting curve. Therefore, their results are at odds with those
of Ref. [43]. It would be interesting to attempt to fit their
data with functional forms which do not preclude reentrant
melting; this could potentially reconcile their data with those
of Hong and van de Walle.

To summarize this section, the work of Hong and van de
Walle [43] has shown that computational studies of melting
can provide new and unexpected insights. Our results supple-
ment this with insight from the study of isomorphs in both
realistic and model systems. They show the utility of the
isomorph approach as a practical tool for determining melting
curves and support the conjecture of Hong and van de Walle
that reentrant melting is possibly universal among metals.

VI. SUMMARY

We have studied numerically an EMT model of Cu and
carried out DFT simulations of Al with a focus on freezing
and melting. Isomorph-theory-based predictions were largely
confirmed, demonstrating the possibility of estimating the
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TABLE II. Temperature, pressure, density, as well as γ and R of
the state points found from the DIC for solid Cu.

T (K) P (GPa) ρ (Å−3) γ R

2008 16.0 0.0873 3.160 0.9906
2168 20.6 0.0894 3.008 0.9915
2331 25.6 0.0917 2.876 0.9921
2499 31.1 0.0940 2.760 0.9927
2672 37.0 0.0963 2.657 0.9932
2850 43.4 0.0987 2.558 0.9935
3033 50.4 0.1012 2.469 0.9939
3221 57.9 0.1037 2.384 0.9939
3413 66.0 0.1063 2.303 0.9941
3609 74.8 0.1090 2.224 0.9942
3809 84.2 0.1117 2.148 0.9942

pressure and temperature variation at melting from a single
reference state point. Our findings are consistent with the
conjecture of Hong and van de Walle of possibly universal
reentrant melting at extremely high pressures.
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APPENDIX A: ISOMORPH DATA

Tables II, III, IV, and V give thermodynamic data for all
the isomorphs studied, both solid and liquid for Cu and Al.

APPENDIX B: CORRECTION TO THE PRESSURE

The pressure and temperature of solid and liquid co-
existence from interface pinning are determined in NPT
simulations. However, in order to generate isomorphs simula-
tions need to be carried out in the NV T ensemble. This means
the pressure is no longer a fixed quantity but one that ex-
periences statistical fluctuations, causing the following issue
for determining the melting pressure via Eq. (8): The starting
point for the reference isomorphs has been previously deter-
mined from interface pinning (or any other method of choice)

TABLE III. Temperature, pressure, density, as well as γ and R of
the state points found from the DIC for liquid Cu.

T (K) P (GPa) ρ (Å−3) γ R

2008 16.0 0.0831 3.378 0.9730
2179 20.3 0.0852 3.210 0.9760
2356 24.9 0.0873 3.058 0.9786
2536 30.0 0.0895 2.925 0.9804
2723 35.5 0.0917 2.799 0.9817
2914 41.4 0.0940 2.690 0.9835
3111 47.9 0.0964 2.586 0.9843
3312 54.9 0.0988 2.489 0.9852
3519 62.4 0.1012 2.398 0.9858
3730 70.6 0.1038 2.316 0.9866
3946 79.4 0.1064 2.237 0.9870

TABLE IV. Temperature, pressure, density, as well as γ and R of
the state points found from the DIC for solid Al.

ρ/ρ0 T (K) P (GPa) ρ (Å−3) γ R

0.8 1141 1.35 0.0575 3.552 0.9759
0.9 1687 12.15 0.0647 2.998 0.9849
1.0 2265 27.07 0.0719 2.591 0.9896
1.1 2854 46.27 0.0790 2.281 0.9920
1.2 3441 69.87 0.0862 2.041 0.9928
1.3 4015 97.96 0.0934 1.851 0.9923
1.4 4573 130.64 0.1006 1.696 0.9906
1.5 5111 167.97 0.1078 1.568 0.9877
1.6 5626 210.05 0.1150 1.458 0.9834
1.7 6117 256.93 0.1221 1.362 0.9775
1.8 6583 308.68 0.1293 1.276 0.9697
1.9 7022 365.34 0.1365 1.198 0.9596
2.0 7433 426.95 0.1437 1.125 0.9465

and should be at coexistence, meaning that P0
s = P0

l = P0
m.

Setting T = T 0 in Eq. (8) and then using PV = NkBT + W
we find

Pm(T = T 0) = W 0
l − W 0

s

V 0
l − V 0

s

= P0
l V 0

l − P0
s V 0

s

V 0
l − V 0

s

= P0
m

V 0
l − V 0

s

V 0
l − V 0

s

= P0
m (B1)

in the case of the simulated pressure being exactly the pressure
found for coexistence. In reality, however, the pressures on
both the liquid and solid sides are subject to statistical fluctua-
tions. Assuming small deviations σ from the expected melting
pressure P0

m,exp for P0
s and P0

l , respectively, Eq. (B1) instead
becomes

Pm =
((

P0
m,exp ± σ 0

P,l

)
V 0

l − (
P0

m,exp ± σ 0
P,s

)
V 0

s

)
(
V 0

l − V 0
s

)
= Pm,exp ± σ 0

P,lV
0

l

V 0
l − V 0

s

± σ 0
P,sV

0
−

V 0
l − V 0

s

, (B2)

TABLE V. Temperature, pressure, density, as well as γ and R of
the state points found from the DIC for liquid Al.

ρ/ρ0 T (K) P (GPa) ρ (Å−3) γ R

0.8 1123 2.26 0.0550 3.562 0.9393
0.9 1680 13.03 0.0619 3.009 0.9632
1.0 2265 27.82 0.0688 2.616 0.9679
1.1 2865 46.23 0.0757 2.361 0.9740
1.2 3476 68.57 0.0826 2.165 0.9772
1.3 4090 94.92 0.0894 2.010 0.9786
1.4 4704 125.35 0.0963 1.883 0.9787
1.5 5312 159.93 0.1032 1.777 0.9777
1.6 5912 198.69 0.1101 1.687 0.9760
1.7 6502 241.69 0.1170 1.609 0.9734
1.8 7080 288.94 0.1238 1.541 0.9702
1.9 7644 340.48 0.1307 1.480 0.9663
2.0 8193 396.32 0.1376 1.425 0.9618
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where the ratio between the volume of a phase Vs/l versus the
difference between the two phases gives a magnifying factor
of ∼10. This makes the contribution from the initially small
deviations σ 0

P,s and σ 0
P,l large.

To obtain sensible results we apply a heuristic approach to
correcting this error. It is a minimal correction which guaran-
tees that the consistency check of Eq. (B1) is satisfied. First,
we assume that the errors in the volumes corresponding to
the reference melting pressure are small enough to be ne-
glected. This is justified since the pressure-volume relations
for the solid and liquid phases were determined not from
single simulations, but from fitting the pressure for a series
of NV T simulations. Thus, taking P0

s and P0
l to be the value

obtained from interface pinning at the reference point P0
m and

using PV = NkBT + W , we know the “true” average values
of the virials for both phases (note that although pressure and
temperature are the same, the volumes differ and therefore so
do the virials). The difference between the true and measured
virials, which defines the correction to the virial at the refer-
ence point W 0

NV T , is given by

�W = Wl,s;m − W 0
l,s;NV T = (

P0
m − P0

l,s

)
V 0

l,s, (B3)

where all quantities on the right side are to be understood
as thermodynamic averages. This correction to the reference-
point virials in Eq. (8) guarantees that the consistency check
is satisfied.
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